
Copyright

by

Taylor Louis Riché

2008

The Dissertation Committee for Taylor Louis Riché

certifies that this is the approved version of the following dissertation:

The Lagniappe Programming Environment

Committee:

Harrick M. Vin, Supervisor

Gregory Lavender, Co-Supervisor

Micheal Dahlin

Don Batory

Raj Yavatkar

The Lagniappe Programming Environment

by

Taylor Louis Riché, B.S.E.; M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2008

To Carrie, Robert, and Bobbie Riché

Acknowledgments

First, I want to begin my thanking my wife, Carrie. Her love and support is un-

bounded. Specifically, I want to thank her for one thing that relates directly to this

dissertation. I was working at IBM in 2001 when I was accepted into the doctoral

program in the Department of Computer Sciences at the University of Texas at

Austin. I was somewhat hesitant to quit my job; I honestly had not expected to get

in. I figured I would get into the Masters program and go back part-time.

Everything changed when I got that acceptance letter. I had been given the

opportunity to pursue my dream that I had had since I was 13: to get a Ph.D. and

become a professor. Still, I was not sure. I remember telling Carrie that I had been

accepted. We were not dating at the time, but we were close friends, and she was

so happy for me. It was this excitement that helped reignite my own dream and

made me realize that we only get to live the dreams we follow. I remember telling

her that I had decided to accept the offer, quit my job, and come back to school

full time. She seemed proud and happy that I made that decision, and seeing her

response filled me with joy. We started dating my first year of graduate school and

got married two years later. It has been the best four and a half years of my life

since March 13, 2004. I dedicate this dissertation to her, but she shares that line

with two other important people.

My parents, Robert and Bobbie Riché, have always supported me throughout

my life. I was not a tough kid or an athletic kid. I was a smart kid who liked to

v

talk a lot. My parents always listened, though. My parents always encouraged me

to learn more. I thank them for instilling in me the passion for learning that has

pushed me this far. I also thank them for teaching me that doing the right thing is

right, regardless of how much it may hurt or inconvenience you. Most of all, I thank

them for their constant love; without that I most definitely would not be here right

now.

I would be amiss if I did not thank my adviser, Harrick Vin. The most

important thing that Harrick has taught me is to always ask the question, “Why?”

It is the perpetual asking, and answering, of this question that sets us apart as

scientists. I recently had the opportunity to talk to Harrick at length about his

time here at UTCS. Not only am I forever grateful for the lessons he has taught me

specifically, I am very grateful for the hard work that he put into the last 15 years

to make our department a wonderful place.

There is a chance that I may be Harrick’s last doctoral student. While on

some level I am honored, I feel more sadness about this fact than anything. I really

hope one day I hear that I am no longer his last student, because UT is losing a

great teacher and adviser.

Greg Lavender, my co-adviser, deserves my utmost thanks. During several

rough parts of my career here, Greg was there to remind me of the positive things and

help to get my spirits up and to keep me going. Also, I thank Greg for introducing

me to the research areas of programming languages and software engineering. I knew

nothing of these things. Greg’s instruction in these areas has helped me develop a

passion for an entire area of research I did not even really know about when I started.

I would like to thank all of my committee members for their insightful com-

ments and suggestions: Mike Dahlin, Don Batory, and Raj Yavatkar. I hope to

continue to work with all three of these great researchers and teachers and to con-

tinue to learn from them as well.

vi

I thank Lorenzo Alvisi for continuing to remind me why I want to be a

professor.

There are five graduate students that I have had the honor of knowing during

the time I spent working on this dissertation—I want to thank them now. Ravi

Kokku and Jayaram Mudigonda were mentors to me, and two people from whom

I have learned so much. Jeff Napper, Harry Li, and Allen Clement have become

some of my best friends and have continued to push me to work harder and smarter.

Conversations with a white board and these five people have helped to push many

of the ideas in this dissertation forward.

I thank all of LASR. This research group has been an amazing place to

work and learn. Seeing it develop from a relatively small group to what it is today

has been a great experience. Further, I thank Sara Strandtman for keeping LASR

running. Nothing would actually work without Sara.

Finally, I thank God for giving me so many blessings in life. Reconciling

faith and science is a tough thing to do, and it is always a work in progress. I feel

that God wants us to learn and never stop asking questions. Treating faith as fact

does not do the beautiful mystery that is faith justice, and using religion as a tool

to judge and demean goes against everything God teaches us. I believe that God

gives us all two very important things: brains and love. I intend to use both of these

to their fullest extent for the rest of my life.

Taylor Louis Riché

The University of Texas at Austin

August 2008

vii

The Lagniappe Programming Environment

Publication No.

Taylor Louis Riché, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Harrick M. Vin

Multicore, multithreaded processors are rapidly becoming the platform of choice

for designing high-throughput request processing applications. We refer to this class

of modern parallel architectures as multi-? systems. In this dissertation, we describe

the design and implementation of Lagniappe, a programming environment that sim-

plifies the development of portable, high-throughput request-processing applications

on multi-? systems. Lagniappe makes the following four key contributions: First,

Lagniappe defines and uses a unique hybrid programming model for this domain that

separates the concerns of writing applications for uni-processor, single-threaded ex-

ecution platforms (single-? systems) from the concerns of writing applications nec-

essary to efficiently execute on a multi-? system. We provide separate tools to the

programmer to address each set of concerns. Second, we present meta-models of

viii

applications and multi-? systems that identify the necessary entities for reasoning

about the application domain and multi-? platforms. Third, we design and imple-

ment a platform-independent mechanism called the load-distributing channel that

factors out the key functionality required for moving an application from a single-?

architecture to a multi-? one. Finally, we implement a platform-independent adapta-

tion framework that defines custom adaptation policies from application and system

characteristics to change resource allocations with changes in workload. Further-

more, applications written in the Lagniappe programming environment are portable;

we separate the concerns of application programming from system programming in

the programming model. We implement Lagniappe on a cluster of servers each

with multiple multicore processors. We demonstrate the effectiveness of Lagniappe

by implementing several stateful request-processing applications and showing their

performance on our multi-? system.

ix

Contents

Acknowledgments v

Abstract viii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Challenges of Multi-? Programming 3

1.2 Programming Environment Requirements 4

1.3 Contributions of the Dissertation . 5

Chapter 2 Target Application Domain 7

2.1 Application Structure . 8

2.2 Request Characteristics . 9

2.3 Operator State . 9

2.4 Application Performance . 10

Chapter 3 State of the Art 12

3.1 Underlying Concepts . 12

3.1.1 Dataflow Programming . 12

3.1.2 Model-Driven Engineering . 13

3.2 Related Programming Environments 14

x

3.2.1 High-Level Environments . 14

3.2.2 Low-Level Environments . 16

3.3 Run-Time Environments . 17

3.4 Multi-?-Aware Systems . 17

Chapter 4 The Programming Model 19

4.1 Procedural Component . 20

4.2 Declarative Component . 22

4.2.1 Application Meta-Model . 23

4.2.2 System Meta-model . 26

Chapter 5 The Programming Environment 29

5.1 Programming Environment Design 29

5.1.1 Prepare Application for Multi-? 30

5.1.2 Integrate the Adaptation Framework 32

5.2 Programming Environment Implementation 34

5.2.1 Lagniappe Library Implementation 34

5.2.2 Lagniappe Compiler Implementation 41

5.3 Multi-Machine Lagniappe . 51

5.3.1 Coordinating Resource Allocation 51

5.3.2 System-Wide Resource Access 52

5.3.3 Resource Heterogeneity . 52

5.3.4 Data Serialization . 53

5.4 Requirements Discussion . 53

Chapter 6 Experimental Evaluation 55

6.1 Application Description . 55

6.1.1 The naptpt Application . 55

6.1.2 The attack Application . 58

xi

6.1.3 The classify Application . 60

6.2 Experimental Setup . 61

6.3 Experimental Results . 63

6.3.1 Applications Automatically Use Resources 63

6.3.2 Lagniappe Reduces Contention 68

6.3.3 Lagniappe Adapts to Changes in Workload 70

Chapter 7 Conclusion 73

Appendix A Lagniappe Source Code for Applications 75

A.1 The naptpt Application . 75

A.2 The attack Application . 78

A.3 The classify Application . 82

Bibliography 85

Vita 91

xii

List of Figures

1.1 An example multi-? system with three general-purpose blades and

one highly-parallel graphics blade. 2

2.1 The attack detector, a sample application showing several properties

of request-processing applications. 8

4.1 The Lagniappe application meta-model. 24

4.2 The Lagniappe system meta-model. 26

5.1 High-level architecture of the Lagniappe programming environment. 30

5.2 High-level architecture of the Lagniappe programming environment. 35

5.3 Class hierarchy of the application-oriented components in the Lagniappe

Library. 36

5.4 Class hierarchy of the system-oriented components in the Lagniappe

Library. 37

5.5 The evolution of the request continuation. 39

5.6 Lagniappe XML code for the sample application. 43

5.7 Lagniappe XML code for a stateless operator. 44

5.8 Lagniappe XML code for a stateful operator. 45

5.9 Lagniappe XML code for the connections between operators. 47

5.10 Lagniappe XML code for a sample multi-? system. 49

xiii

5.11 Lagniappe XML code for a processing element. 49

5.12 Lagniappe XML code for a communication channel, a memory re-

source, and a mutual exclusion resource. 50

6.1 The application graph for the naptpt application. 56

6.2 The application graph for the attack application. 58

6.3 The application graph for the classify application. 60

6.4 Physical setup of the experimental testbed for the naptpt experiments. 61

6.5 Physical setup of the experimental testbed for the attack experiments. 62

6.6 Throughput for naptpt for different processor configurations and dif-

ferent workloads. 64

6.7 Throughput for attack for different processor configurations and dif-

ferent workloads. 65

6.8 Comparison of average processor idle time for the attack application

between the twelve and sixteen processor cases. 65

6.9 Throughput for classify for different processor configurations and dif-

ferent workloads. 66

6.10 Throughput comparison to not using state information for load dis-

tribution. 67

6.11 Time spent processing and idle for both Lagniappe and a system that

does not use state information for load distribution. 67

6.12 Throughput of Lagniappe and the NoState system as the size of the

critical section changes for the attack application. 68

6.13 User and idle CPU utilization of the Lagniappe and NoState systems

for the attack application as the size of the critical section changes. . 69

6.14 Throughput for naptpt over time as load increases to show adaption

of resource usage with increasing load. 70

xiv

6.15 Throughput for attack over time as load increases to show adaptation

of resource usage with increasing load. 71

6.16 Number of processors assigned to the lookup operator during the ex-

periment. 71

6.17 The number of processors assigned to operators in the classify appli-

cation as the workload changes over time. 72

xv

Chapter 1

Introduction

Moore’s law and the accompanying improvements in fabrication technologies (90nm

to 65nm and beyond [23]) have increased significantly the number of transistors

available to processor designers. Processor designers use these transistors to de-

velop architectures with multiple, multithreaded cores. System designers have be-

gun utilizing multiple (possibly heterogeneous) multicore processors to design high-

throughput request processing systems. We refer to this entire class of modern parallel

systems as multi-? systems.

Figure 1.1 shows an example multi-? system. The example shows a blade

system (i.e., several main-boards that share a chassis with a common power infras-

tructure and a high-speed backplane) that has four blades. Three of the blades,

blades 1 through 3, have two dual-core processors. Each core also has four hard-

ware contexts, or threads, in it as well. Blade4, however, represents a highly parallel

graphics card with many small cores that communicate to each other through a

mesh network. This example is not far fetched. Apple’s soon to be released library,

OpenCL [7], will expose the parallel resources of graphics processors to programmers

and allow them to schedule computational tasks to the graphics processor. While

there is obvious heterogeneity in this example with processor architectures, commu-

1

nicating between processors also has drastically different costs. Take for example

message passing between the two processors on Blade1 versus a processor on Blade1

sending a message to a processor on Blade2.

Blade1 Blade2 Blade3 Blade4

Figure 1.1: An example multi-? system with three general-purpose blades and one
highly-parallel graphics blade.

Multi-? systems initially were designed to meet the demands of specific do-

mains, such as networking [5, 22], graphics [36], and interactive games [14, 27].

For instance, in networking, multi-? systems have been used to design multiservice

routers for GENI [44], Virtual Private Network (VPN) gateways, intrusion detec-

tion systems [8], content-based load distribution, and protocol gateways (IPv4/v6

gateway [43]). Now, multi-? systems rapidly are becoming the de facto platforms for

many general-purpose high-throughput computing environments (e.g., web, database,

and application servers) [15, 16, 34, 46, 47]. Engineers build these systems using the

emerging class of general-purpose multicore processors from Sun [9], Intel [6], and

AMD [1], among others.

2

1.1 Challenges of Multi-? Programming

Although multi-? systems are becoming commonplace, programming environments

that simplify the development of portable, high-throughput applications on these

systems has lagged behind. Multi-? systems are difficult to program for the following

reasons:

• A request-processing application can be mapped onto a multi-? system in at

least three different ways. The pipeline approach splits an application into

independent stages and maps each stage to a processing element; thus, each

request during its lifetime traverses multiple processing elements [47]. The

parallel approach lets each element process a request from start to finish; pro-

cessing elements available in a multi-? system process multiple requests in

parallel. Finally, the hybrid approach replicates some parts of the applica-

tion while staging others. Choosing the approach that delivers the highest

throughput is difficult because the choice depends upon application, system,

and workload characteristics [40].

• Most request-processing applications are stateful. The persistent state main-

tained by these applications is accessed and updated by a stream of related

requests, referred to as a flow. In a multi-? system with multiple distributed

memory levels and message-passing channels, providing efficient and coherent

access to shared state is challenging. Further, the non-uniform memory archi-

tectures of many multi-? systems complicate the selection of an appropriate

policy (e.g., request-level distribution vs. flow-level pinning) for distributing

requests across processing elements [40].

• A request-processing application generally processes multiple types of requests.

In most realistic deployments, however, the workload (both the composition of

request types and volume of traffic) fluctuates significantly over time. Hence,

3

a request-processing system must adapt resource allocations dynamically [32].

• Multi-? systems often contain a significant amount of heterogeneity–multiple

types of processor cores with support for many different mechanisms for inter-

processor communication and data sharing (e.g., hardware-supported coherent

memory vs. explicit state-sharing and message-passing mechanisms). Today,

some programming environments for multi-? systems expose these details to

programmers. Exposing details, as is currently done, not only complicates the

task of developing applications, but also makes applications not portable.

1.2 Programming Environment Requirements

Given the challenges a programming environment for multi-? systems must conquer,

any new programming environment that hopes to successfully face these challenges

must meet the following requirements in its design and implementation:

• Automate the mapping of applications onto multi-? systems;

• Efficiently utilize the available processing resources in a multi-? system us-

ing appropriate request distribution and persistent state management mecha-

nisms;

• Dynamically and transparently adapt resources allocated to applications to

match fluctuations in workload; and

• Achieve all of the above without exposing any multi-? system hardware details

to programmers (thereby simplifying programming and ensuring portability of

applications).

4

1.3 Contributions of the Dissertation

In this dissertation, we describe the design and implementation of the Lagniappe

programming environment1, which simplifies the development of portable, high-

throughput request-processing applications on multi-? systems. Lagniappe meets

the requirements we establish. We make the following four key contributions:

1. We define a unique hybrid programming model. This model separates the

concerns of writing applications for uni-processor, single-threaded execution

platforms (single-? systems) from the concerns of writing applications for ex-

ecution on a multi-? system. We provide separate tools to the programmer

to address each set of concerns. We further separate the concerns of appli-

cation and system programming, making applications written in Lagniappe

inherently portable.

2. We present meta-models of applications and multi-? systems that identify the

necessary entities for reasoning about the application domain and multi-? plat-

forms. Programmers use these meta-models to define instance models of their

particular applications and platforms.

3. We design and implement a platform-independent mechanism called the load-

distributing channel that factors out the key functionality required for moving

an application from a single-? architecture to a multi-? one.

4. We design and implement a platform-independent adaptation framework that

defines custom adaptation policies from application and system characteristics

to change resource allocations with changes in workload.

We implement Lagniappe on a cluster of servers each with multiple multi-

core processors. We demonstrate the effectiveness of Lagniappe by implementing
1Lagniappe is a Cajun-French word for “a little something extra.” If programmers give us a

relatively small amount of extra information, we can give them much added benefit.

5

several stateful request-processing applications and showing their performance on

our multi-? system.

The dissertation is organized as follows. We present a brief overview of the

application domain in Chapter 2. In Chapter 3, we discuss the state of the art

and that no current solution meets all the requirements we present. In Chapter 4,

we define our hybrid programming model. Chapter 5 describes the design, imple-

mentation, and operation of the Lagniappe programming environment. Chapter 6

describes our test applications and the setup and results of our experiments. Finally,

we conclude in Chapter 7.

6

Chapter 2

Target Application Domain

In this chapter we describe in detail the Lagniappe target application domain:

request-processing applications. We specifically focus on networking applications

in this thesis; however, the properties we describe in this chapter apply generally

to all request-processing applications. Figure 2.1 shows an application we call the

attack detector. This application examines incoming requests looking for patterns

that would suggest an attack is occurring. By attack we could mean worm prop-

agation, distributed denial of service, or simple “hacking.” The exact definition is

not important for this example.

We use this example throughout the section to help explain the properties

of the domain. The basic behavior of the application is as follows. Requests enter

the Classifier and are marked as either good, suspicious, or bad. Good requests

move to the Shallow Inspect function and it performs a simple test to determine if

the request is part of an attack. If request is not an attack, the application sends

the request out. If Shallow Inspect thinks the request may be part of an attack,

notifies Classifier. Deep Inspect performs a more computationally intense check on

all requests related to any suspicious requests from ShallowInspect. If Deep Inspect

performs a test that fails, it notifies Classify and all future related requests are

7

dropped by Classify. Furthermore, Deep Inspect notifies Mitigate which tries to

stop the newly-discovered attack.

Classifier

DeepInspect

ShallowInspect

Mitigation

Figure 2.1: The attack detector, a sample application showing several properties of
request-processing applications.

2.1 Application Structure

Request-processing applications are commonly constructed of a directed graph of

separate functions. The Click modular router [31] proposed this graph construction

as a way to provide modularity to a traditionally low-level domain. The figure

shows that our attack detector example has four of these functions: Classify, Shallow

Inspect, Deep Inspect, and Mitigate. A request enters the application at the head

of the graph, and passes from one function to the next until a function either drops

the request (i.e. the system reclaims the resources it assigned to request), or the

request exits the application graph. The attack detector shows both of these cases,

with the Classifier dropping some requests and sending others along.

In this thesis, we refer to an application as a collection of operators. Requests

flow through channels between the operators. Each operator in the application may

contain multiple inputs and outputs, and each operator may generate zero, one,

or multiple requests while it processes an incoming request. Operators also tend

8

to send two major classes of requests between themselves. The first type is data

requests, these are the requests that the network injects into the application. The

second type of requests are control requests. Operators send these control requests

between themselves to relay status information. In our attack detector example,

the solid lines in Figure 2.1 represent the transmission of data requests, while the

dotted lines represent the transmission of control requests alerting other operators

of an attack.

2.2 Request Characteristics

In some applications, requests may be unrelated. In other words, the processing

of one request has no impact on the processing of any other request in the sys-

tem. However, many applications process flows of requests. We define a flow to be

any sequence of requests (not necessarily adjacent in arrival time) that share some

property. We define a flow signature to be a function that takes requests to flow

identifiers. Any requests that a flow signature maps to the same flow identifier are

said to be in the same flow.

Note, an application may contain several different flow signatures. Each

operator may have its own flow signature, as each operators need not be from the

same application designer, and thus, can have different requirements for defining a

flow. In our example, there is only one flow definition. Shallow Inspect and Deep

Inspect send flow identifiers to Classifier and Mitigate when a request fails a test.

2.3 Operator State

The request-processing functionality of an operator may access “local” state that

exists only while the operator is executing a particular request. However, many

request-processing applications maintain persistent state—state that exists beyond

9

the processing of any one request. Accesses to persistent state can dominate the

time it takes an operator to process a request [37]. Persistent state is important

in request-processing applications because the logic with an operator many times

depends on the requests it has processed in the past.

Persistent state accesses fall into two classes. The first class of accesses do not

depend on any type of relation between requests. The second class of accesses use

flow identifiers as keys to map to particular data. We call persistent state that the

operator accesses by a flow identifier flow state. In the attack detector application,

the Classify operator maintains a mapping of flow identifiers to state representing

the status of the flow. The choice is dependent on the semantics of a particular

application. For example, in the attack detector, Shallow Inspect may keep a list

of strings that indicate a worm attack. This state would change very rarely, and is

not indexed differently between flows of requests. However, the table in Classifier

may change frequently as attacks are discovered, and is solely accessed using flow

identifiers.

2.4 Application Performance

One does not measure the performance of a request-processing application by the

number of executions per second it performs. Rather, application designers tradi-

tionally create request-processing applications to meet specific throughput or latency

guarantees. The programmer may construct the application to process the maxi-

mum number of requests per second, thus maximizing throughput. Also, the pro-

grammer may construct the application to process a request in a minimum amount

of time, which we refer to as request latency. While programmers typically try to

maximize application performance, many times they must deploy request-processing

applications in environments where the application has specific performance goals it

must meet, possibly according to a business-driven service level agreement (SLA).

10

In these cases, the programmer does not care to maximize performance, but rather

to meet the throughput or delay guarantees he or she made in the SLA. For exam-

ple, the attack detector application is deployed to the internet gateway of a small

company. While the application could possibly support the rate supported by the

physical network (for example, 1Gbps), the company may have simply only paid for

the application to support a throughput of 100 Mbps.

11

Chapter 3

State of the Art

The state of the art in programming environments for multi-? systems is varied

and deep. In this chapter, we look at the work that has preceded Lagniappe and

discuss no existing tool or environment meets all our requirements for a multi-? pro-

gramming environment for request-processing. First, we look at the programming

language and software engineering concepts upon which we build Lagniappe. We

then focus on related programming environments and whether these environments

meet our requirements. Next, we examine some run-time environments that deal

with parallel software execution resources (e.g. threads and events). Finally, we

look at general-purpose software-system support for multi-? platforms.

3.1 Underlying Concepts

3.1.1 Dataflow Programming

Dataflow programming has been used to map computation to parallel resources for

many years, and Johnston et. al [29] present a survey of the main ideas and seminal

pieces of work in dataflow research.

Lagniappe, however, differs from the traditional view of even coarse-grain

12

dataflow models, as an operator in Lagniappe does not need to wait for all its

incoming ports to have data to execute. An operator can execute any time a request

reaches a port. Thus, the model-driven aspect of Lagniappe does not define a

dataflow graph in the traditional sense, but more accurately acts as a coordination

language [38].

3.1.2 Model-Driven Engineering

Model-driven engineering (MDE) is a software-development methodology where pro-

grammers create models of systems as opposed to executable code. MDE environ-

ments apply transforms to models that move one type of model to another. Tra-

ditionally, the programmer (or an environment) applies transforms to the models

to create increasingly system-specific models, eventually applying a transform that

creates executable code.

Modeling framework often start with a meta-modeling language. In other

words, the framework provides a model that allows programmers to create mod-

els of their software system. Programmers first create platform-independent models

(PIM) that represent the software system independent of any type of implementation

technology or details. Ideally, using a transform definition language, the program-

mer can then write transform rules for moving this PIM to a platform-specific model

(PSM) that defines the software system in terms of specific technologies and imple-

mentations that are available on a particular platform. Finally, a transformation is

applied to the PSM to create executable code.

Note, the meta-model used to create the PIM could be written using a model.

In fact, each level of the framework could be thought of as an instance of a higher-

level model. Accepted practice is to limit this model hierarchy to four levels [30]: a

meta-modeling language, a meta-model, PIMs, and PSMs.

Lagniappe makes several diversions from the traditional MDE approach in

13

its purest form. We define PIMs of request-processing applications and multi-?

systems. Programmers create their own PSMs manually—we do not provide a set

of transformation to move from PIMs to PSMs. However, we do provide a series of

transformations that translate the PSMs of both the applications and the systems

into executable code.

Another diversion from the traditional model in Lagniappe is the conscious

decision to have programmers still provide procedural code along with their declar-

ative model descriptions. We make this decision as we feel that the issues of single-?

programming are well understood and are addressed by a large existing body of

knowledge and implementations. However, it is in addressing the concerns of multi-?

programming that can truly benefit from the high-level reasoning, ease of program-

ming, and ease of reuse that a MDE approach provides.

3.2 Related Programming Environments

Related packet request-programming environments can be broken into two major

groups: high-level and low-level environments.

3.2.1 High-Level Environments

High-level environments focus on the application features more than the architec-

tural details. However, many of these environments do not truly achieve portability,

nor do they take into account the important issue of persistent-state access in their

designs.

Click [31] is the most well-known packet-processing programming environ-

ment. Click allows programmers to specify applications in terms of a connected

graph of independent elements, Click initially was written for a single thread but

follow-on work with MPClick [18] expands Click to utilize multiple threads. Click

has no mechanisms for replicating elements. Thus, Click does not handle major

14

workload changes that cannot be dealt with by moving elements from one processor

to another to attempt to lower processor utilization. Click is written as a Linux

module, with no real way to separate a Click application from the underlying Linux

platform, and thus has no inherent support for processor heterogeneity beyond what

Linux provides.

Observe that the notion of Lagniappe operators is very similar to the reusable

elements defined in Click. In fact, one can convert many Click modules into Lagniappe

operators with relative ease.

Flux [16] is a high-level environment that provides a combination program-

ming environment in which the dataflow aspects of the system are modeled sepa-

rately from the request processing. Flux can use any multithreaded software library

for its underlying execution. The authors guarantee safe access to shared state by

labeling atomic functions, and scheduling execution to guarantee atomicity. Flux

does not meet our requirements as it only guarantees correctness of shared state but

does nothing to provide efficient access. Also, Flux cannot adapt to any changes in

workload as it is designed to be run on any available threading model.

A more recent environment is Aspen [45]. Aspen does not address the main

issues that make multi-? development difficult, namely, state access, in the language

design. While Aspen supports run-time adaptation, nothing guarantees efficient ac-

cess to persistent state while balancing load among resources. In other words, Aspen

does not take contention for shared state into account when scheduling resources.

Another recent environment, Merge [35] provides a programming environ-

ment for multi-? applications that fit into the map-reduce paradigm of side effect-free

tasks. Merge provides a framework that schedules these tasks onto possibly hetero-

geneous resources by using a intermediate runtime library to mask the differences

in resource implementation. While they show good results in both performance and

programmability, the type of request-processing applications we focus on are not

15

side effect free. Many request-processing applications do maintain persistent state

that the application can possibly access and affect on every request. Merge does not

meet all of our requirements as it focuses on a different, and specific, application

domain.

Stream environments (such as Streamit [42] and Streamware [26]) provide

programmers with new languages that focus on request processing. Stream pro-

grams are written in a fashion more similar to standard programming, i.e., no sepa-

ration between coordination and execution. The stream compilers determine how to

separate the functionality of the program (usually with keyword help from the pro-

grammer) into tasks that are then scheduled on the multi-? resources of the system.

This approach is a much more fine-grained approach to parallelism. Stream lan-

guages work well in signal-processing applications and low-level network programs

that are more computationally bound and less bound by accesses to persistent state.

While stream programs do replicate operators, given the lack of tools to deal with

persistent state, we feel that stream programming does not meet our requirements

for the scope of applications upon which we focus.

3.2.2 Low-Level Environments

Low-level environments focus on particular architectures or architectural features,

and are typically implemented to only work for a particular platform.

NesC [24] is a low-level dialect of C that specifically deals with the embedded

restrictions of sensor networks; and thus, it does not provide enough flexibility

for our needs. Nova [25] is a language specifically designed to be easy to compile

for the Intel’s IXP, a platform where hardware details are exposed explicitly to

the programmer, which also keeps it from meeting our requirements. Baker [19]

presents a slightly higher-level programming environment than NesC and Nova, but

is specifically designed to compile to the IXP platform and exposes platform details

16

to the programmer, thus losing portability.

3.3 Run-Time Environments

The literature contains several examples of run-time environments designed with

request-processing applications in mind. Some of these environments include SEDA [47],

Capriccio [46], and Tame [33]. These environments present APIs that allow pro-

grammers to create efficient and high-performance request-processing applications.

However, while they do expose concurrency primitives to the programmer, they do

not allow programmers to model the state-access patterns of the application and

could possibly introduce unnecessary contention. As well, these systems, though

multithreaded, are not explicitly designed to use multi-? platforms and the con-

straints that come from these platforms, specifically, the challenges of heterogeneity

in the underlying resources.

3.4 Multi-?-Aware Systems

Most modern operating systems are now aware of the underlying multi-? resources in

their underlying platforms. Multicore processors are becoming ubiquitous enough

to necessitate this functionality. However, even though most operating systems

may support multi-? resources, at least on a local-machine level, for a programmer

to use the resources effectively in a high-throughput request-processing application

(i.e., guarantee efficient state access), a programmer must delve into the operating

system APIs and manually assign the resources to the components of his or her

application. Apple Computer is set to release a technology in their next operating

system version that promises to allow more effective use of multi-? resources by au-

tomatically turning any application into a request-processing style application, thus

increasing the inherent parallelism available [4]. However, Apple has released little

17

technical information on this technology, which they are calling, “Grand Central,”

so we cannot comment on whether it will meet our requirements.

Virtualization promises to provide an efficient way for programmers and sys-

tem designers to take advantage of multi-? platforms. The basic premise is that

all the specific details of the multi-? hardware is hidden under some number of vir-

tual machines. Applications running these virtual machines know nothing of the

underlying system details. Parallelism is achieved by running multiple copies of the

virtual machine.

Systems such as VMWare [10] and XenSource [12] provide advanced virtual-

machine functionality. VMWare’s VMotion product [11] allows for the migration of

virtual machines across physical machines in a multi-? cluster. VMWare also can

replicate virtual machines across physical machines or replicate virtual machines on

the same machine. While virtualization addresses many of our requirements, it does

still fall short of meeting all of them.

If VMWare replicates a virtual machine, VMWare does not handle the load-

distribution. What policy to use, whether it be flow-pinning, round-robin, or some

other policy is left up to a system administrator. No information from the applica-

tion is automatically taken into account. Furthermore, the triggers for adaptation

are based purely on processor utilization, and again have no application-specific

knowledge. In a request-processing application that guarantees a certain delay

bound, adapting because a processor has crossed a particular utilization threshold

may be unnecessary. Whether a processor is running at 10% or 95% is inconsequen-

tial as long as the system processes requests within the delay guarantee.

18

Chapter 4

The Programming Model

We face a fundamental challenge in designing a programming model for request-

processing applications on multi-? systems: the issues that concern single-? pro-

gramming are distinctly different from the issues that concern multi-? programming.

Single-? issues are those that that refer to the request-processing functionality

and the implementation of platform-resource, “drivers.” Multi-? issues are those

that refer to the coordination of operators, resources, and concurrent accesses to

shared, persistent state.

For example, one single-? issue is the implementation of an operator’s request-

processing functionality. An associated multi-? concern is defining the access seman-

tics of the operator, i.e., how does this operator access persistent state, and thus

how should the system schedule multiple copies of the operator to reduce contention

for shared state. Another example of a single-? issue is how a system programmer

implements a processing resource, i.e. the functionality that makes the hardware

resource available for scheduling by the operating system. A related multi-? issue is

how many of these processing resources are in the system.

A programming model that forces programmers to face these challenges with

the same tools has two potential dangers: 1) It could force the programmer to

19

program at such a high-level that they lose the advantages of the specific underlying

platform; or 2) Low-level mapping and coordination logic dominate the code, making

it harder to write and maintain.

Lagniappe takes a fundamentally different approach, and provides a hybrid

programming model that separates the concerns of single-? and multi-? program-

ming and present to programmers different tools for addressing these distinct sets

of concerns. Lagniappe provides programmers a traditional procedural environment

for writing the single-? code. This environment allows programmers to implement

the core request-processing and resource functionality in a language that is famil-

iar to them. On the other hand, to address multi-? concerns, Lagniappe provides

programmers a model-driven declarative environment that allows programmers to

reason about the complicated multi-? concerns of coordination, state-access, and

mapping at a high-level, creating program and system descriptions that are simple

and promote reuse.

Furthermore, we separate the concerns of application and system program-

ming by separating the programming of application functionality from system-

resource implementation both at the procedural and declarative level. We sepa-

rate these concerns to build portability into the system at a very basic level; i.e.,

application code is explicitly portable as no system resources are made visible to it.

In this chapter we first discuss the traditional procedural programming-model

component in Section 4.1 and then we describe, in detail, the model-driven, declar-

ative programming-model component in Section 4.2.

4.1 Procedural Component

The Lagniappe programming environment requires programmers to partition the

request-processing application into a collection of operators that process each re-

quest (similar to the Click Modular Router [31]). Application programmers specify

20

each operator using a standard procedural language (C++, in our implementation).

Lagniappe places three requirements on the design of operators:

1. Operators must be independent of each other. The independence property is

defined in terms of any persistent state that an operator may maintain. An

operator is said to be independent of other operators if it does not access

any persistent state maintained by the other operators. This independence

property ensures that Lagniappe may execute these operators in parallel and

without any contention for persistent state. This configuration simplifies the

mapping of operators onto processors in a multi-? system.

2. Operator implementations must be thread-safe; access to persistent state main-

tained by the operator must be protected using locks and condition variables.

This property ensures that multiple instances of operators can execute in par-

allel without violating correctness.

3. Each operator must import interfaces to initialize, access, install, and purge

persistent state (as required by the application meta-model defined in Sec-

tion 4.2.1) as well as implement a method that describes the state-access se-

mantics of the operator. Information about persistent state allows Lagniappe

to determine an appropriate request-distribution strategy across multiple in-

stances of an operator and to migrate persistent state from one processor to

another when the allocation of processors to operators dynamically changes.

In addition to these three hard requirements, Lagniappe recommends that

these operators be as small in granularity as possible. This recommendation has

two benefits: 1) Small granularity operators are often easier to reuse and 2) The

smaller the operator granularity, the greater the flexibility available to the Lagniappe

run-time environment for distributing these operators across the parallel processing

resources available in the multi-? system.

21

In addition to the procedural definition of application functionality, Lagniappe

requires that the programmer provide procedural implementations of the underlying

multi-? resources in a system. Lagniappe uses these system, “drivers,” to access the

functionality that a particular multi-? system provides. Unlike the operator defini-

tions, Lagniappe puts no restrictions on the procedural resource implementations.

4.2 Declarative Component

As we discuss in Chapter 1, the design of Lagniappe is driven by four requirements:

• Automate the mapping of applications onto multi-? systems;

• Efficiently utilize the available processing resources in a multi-? system us-

ing appropriate request distribution and persistent state management mecha-

nisms;

• Dynamically and transparently adapt resources allocated to applications to

match fluctuations in workload; and

• Achieve all of the above without exposing any multi-? system hardware details

to programmers.

Our goal with the declarative model is to identify the necessary entities for

reasoning about executing request-processing applications on multi-? systems so

that we can design a programming environment that meets the above requirements.

Specifically, we strive to improve programmability by providing programmers a suffi-

cient set of entities with which they can model their applications and the underlying

multi-? systems.

We present to programmers a custom model-driven engineering (MDE) frame-

work. For Lagniappe, we define two meta-models: (1) the application meta-model

and (2) the system meta-model. These meta-models formalize the specification of

22

application and system features necessary for efficiently executing an application on

a multi-? system. Application developers and system designers, respectively, create

instances of the application and system meta-models to describe specific applications

and target multi-? systems.

Again, observe that we separate the specification of a target multi-? sys-

tem from that of request-processing applications thus making the specification of

Lagniappe applications completely portable. Further, explicit specification of system

features allows Lagniappe to utilize transparently the most appropriate state-sharing

and communication mechanisms (without exposing any of these system details to

application programmers). By combining the instances of the application and sys-

tem meta-models, Lagniappe automatically generates platform-specific code. We

discuss this process in more detail with code examples in Chapter 5.

In what follows, we describe the Lagniappe application and system meta-

models.

4.2.1 Application Meta-Model

The application meta-model in Lagniappe specifies: (1) an application as a com-

position of operators and (2) features of the persistent state maintained by each

operator. The class-diagram representation of the application meta-model is shown

in Figure 4.1.

Application Specification:

In Lagniappe, a programmer models a request-processing application as a directed

graph of Operator entities. Requests flow through this graph with each Operator op-

erating on the requests. This graph specification is used by Lagniappe to determine

efficient mapping of Operators to processing resources such that the inter-operator

communication overhead is minimized.

23

1..*

0..*

1..*

1

1..*

2
0..*

1

1..*

1

Name
FileURI

Operator

InstallMethod
GetMethod
PurgeMethod
InitMethod
Type
Name

State

Name
Direction
Handler

Port
Name
FileURI

Type Channel

Name
GetFlowID

Flow
Signature

1

1..*

1

1..*

Language
Library
Dependencies

Environment

0..1

1..*
0..1

0..1

DelayGuarantee
Application

Figure 4.1: The Lagniappe application meta-model.

Formally, each Operator is associated with one or more Ports. Each Port

has a Direction, which is specified as either INCOMING or OUTGOING. An IN-

COMING Port is associated with a handler function represented by the Handler

property. These handlers, provided in the procedural specification, implement the

request-processing functionality of the Operator. Each Port also is associated with

a Type entity that defines the type of requests that flow through it. The execution

environment required for each Operator is specified by the Environment entity.

An application is specified by connecting Ports of different Operators using

Channel entities. These Channels define the channel of communication between Op-

erators. We model a collection of Operators as an Application. An Application has

a DelayGuarantee property that specifies the maximum delay in microseconds a

request traversing the application can incur.

Operator State Specification:

The application meta-model includes specification of properties of persistent state

maintained by the Operators. Lagniappe uses the specification of persistent state

to: (1) facilitate concurrent execution of multiple instances of Operators on multiple

24

resources available in a multi-? system; (2) determine an appropriate request distri-

bution strategy across multiple instances of the same Operator; and (3) migrate the

persistent state from one processor to another when the allocation of processors to

Operators changes dynamically and the processors do not share hardware-coherent

memory.

Formally, application programmers define persistent state by associating a

State entity with each Operator. The application programmer must declare the type

and name of the persistent state, as well as identify four methods—Install, Get,

Purge, and Init—for accessing, installing, purging, and initializing persistent state.

Note that these functions are black boxes to Lagniappe; application programmers

must provide thread-safe implementations of these functions using the procedural

specification.

To identify the flow to which a request may belong, Lagniappe requires pro-

grammers to specify a GetFlowID function in the Flow Signature specification to

associate a unique flow ID with each request (the implementation of the GetFlowID

function is provided as part of the procedural specification). Lagniappe uses this

flow ID to route requests to appropriate instances of the Operator in the event that

multiple instances of the Operator concurrently execute. This distribution of work

minimizes contention for persistent state, and thus helps to fulfill the requirement

to guarantee efficient state access automatically.

Multi-? Concerns

The application model captures two key multi-? concerns. The first is that of

operator coordination and communication. We define the Port and Channel en-

tities to model this communication. Furthermore, the Type entity provides typed-

communication to the Operator entities, allowing the programmer to further restrict

and describe the coordination between Operator entities.

25

The second multi-? concern the application model addresses is that of concur-

rent access to persistent state. By providing to Lagniappe a Flow Signature entity,

the programmer allows the system to make load-distribution and resource-allocation

decisions based on that Operator entity’s state-access semantics.

4.2.2 System Meta-model

A multi-? system may contain one or more types of processors, several memory levels

(shared vs. private as well as with or without support for hardware coherence), and

one or more channels for interprocessor communication. The system meta-model

formalizes the specification of all of these features of a multi-? system. The class-

diagram representation of the system meta-model is shown in Figure 4.2.

1..*
1..*

Name
Proc Type
CoreType
Init
Destroy
TimerStart
TimerStop
File URI

Processing
Element

Name
CoreType
Bandwidth
Latency
Read
Write
File URI

Memory
Name
Core Type
Bandwidth
Latency
Overhead
Get Request
Put Request
File URI

Communication
Channel

1..*
1..*

Name

Processor
Group

0..1

1..*

Name
CoreType
Lock
Unlock
Wait
Notify
NotifyAll
File URI

Mutex

0..*

1

Name

Memory
Group

0..1

1..*

Figure 4.2: The Lagniappe system meta-model.

The Processing Element entity is the core of the system meta-model and

represents the basic computational resource available in the system. The Processing

Element entity is also the unit of resource allocation and deallocation. The Name

property gives each Processing Element instance a unique identifier, and the Proc

26

Type property defines the type of the element (e.g., a Pentium or a SPARC core).

Processing Element entities have two properties—TimerStart and TimerStop—that

provide implementations that allow Lagniappe to measure the performance of a

Processing Element implementation.

Two key multi-? concerns at the system level are the need to support multi-

ple machines and the differences in efficiency in memory-coherency. We propose the

Processor Group and the Memory Group entities to address these concerns, respec-

tively. Each Processing Element can be a member of a Processor Group; all Processing

Elements within a group are of the same type and require only one executable for the

application. Similarly, each Processing Element can be a member of a Memory Group;

all Processing Elements within a memory group share a hardware-supported coher-

ent memory. Processing Elements between Memory Groups may still have access to

software-supported coherent memory (for example, if an operating system exports

only one memory space to all processors, regardless of hardware coherence). The

Init and Destroy properties identify functions (whose implementations are provided

as part of the procedural specifications) to initialize or stop a processing element.

The system meta-model also captures two paradigms for communication

across Processing Elements: shared memory or message-passing channels. A Commu-

nication Channel entity represents a message-passing mechanism across processing

elements. The Name property provides a unique identifier to a Communication

Channel entity. Building on the LogP model of parallel computation [20], we de-

fine Bandwidth, Latency, and Overhead as properties that define the performance

characteristics of a channel. The GetRequest and PutRequest properties define the

methods used to interact with the channel. The FileURI property identifies the loca-

tion where the procedural implementations for all of these functions can be found.

The specification of the Memory entity is similar to the Communication Channel

entity. The Name, Bandwidth and Latency properties specify basic features of a

27

memory level, while Read and Write refer to the methods used for accessing the

memory entity. Finally, each Memory entity is associated with a Mutex entity that

the Memory uses to implement mutual exclusion. A system programmer provides

implementations (using the procedural specification) for the Lock, Unlock, Wait,

Notify, and NotifyAll.

Notice that a system designer creates an instance of the system meta-model

and compiles it only once for each multi-? system. This model can be reused for all

applications that execute on the system.

28

Chapter 5

The Programming Environment

While Chapter 4 describes the hybrid programming model that Lagniappe presents

to programmers, in this chapter we describe the design and implementation of the

Lagniappe programming environment.

5.1 Programming Environment Design

The Lagniappe programming environment has one main goal: to generate an exe-

cutable application that is able to run on a particular multi-? system. The program-

mers provide procedural implementations of the single-? application and resource

functionality as well as declarative descriptions of the multi-? concerns such as co-

ordination and concurrent state access properties. In this section, we describe the

three major transformations that turn these application and system instance models

into platform-specific procedural code. The three transforms are:

1. Prepare application for execution on a multi-? platform.

2. Integrate resource adaptation framework with application.

3. Bind with application-specific and system-specific implementations.

29

Application
Model

System
Model

Application
Code

System
Code

Executable Lagniappe
Application

Prepare application for multi-★ execution

Integrate adaptation framework

Bind implementations

Figure 5.1: High-level architecture of the Lagniappe programming environment.

Figure 5.1 shows a high-level view of the Lagniappe programming environ-

ment, with the three transforms represented as black boxes. We now describe each

of these transforms in more detail, and provide more insight into how each transform

moves the models forward to a platform-specific multi-? executable.

5.1.1 Prepare Application for Multi-?

There exist two facts that distinguish single-? execution from multi-? execution:

1. Operators may simultaneously run on multiple processing elements. We call

each instance of an operator a replica.

2. The numbers of replicas necessary to meet application performance demands

may change over time.

30

These facts imply interoperator communication must support the following

three features:

1. One-to-many communication: Lagniappe may replicate operators during run-

time. Thus, an operator may have to send a request to not just one instance

of the next operator in the graph, but one of possibly many replicas.

2. Changing the number of replicas: Workload changes in request-processing ap-

plications, and thus the number of replicas necessary to meet the performance

requirements of an application must also change. Therefore, the one-to-many

channel must support changing the number of destination replicas during run-

time.

3. Multiple load-distribution policies: One of our requirements is to guarantee

efficient state access and reducing contention for shared state is a method we

use to achieve this requirement. The state-access semantics define the most

efficient load-distribution policy. For example, if an operator has flow state,

a strategy called flow-pinning, where the processing of flows is scheduled to

processing elements, may be the most efficient as requests from different flows

do not contend for state access. However, operators without flow state may

benefit from the lower overhead of a round-robin approach.

We introduce the load-distributing channel(LDC) mechanism to meet the

previous requirements of interoperator communication. The LDC is a platform-

independent mechanism and is a one-to-many, output-buffered communication chan-

nel that can distribute requests across recipients based on multiple load-distribution

policies. The LDC is adaptive; it supports changing the number of destination op-

erators during runtime.

The first transformation of the user-provided application model is to replace

all connections between operators with LDCs. This transformation imbues the ap-

31

plication with the mechanisms to support adaptation and the concurrent execution

that can occur in a multi-? environment.

5.1.2 Integrate the Adaptation Framework

In the previous section we discuss a powerful mechanism, the load-distributing chan-

nel, that factors out the main difference between single-? and multi-? execution.

However, the LDC is just a mechanism. Lagniappe must still make several policy

decisions. The second transform the Lagniappe programming environment performs

is to integrate the adaptation framework(AF) into the application, generating poli-

cies that control the LDC. Note, while the LDC is application-independent and

platform-independent, the final policy decisions are neither. However, the power of

the AF is that it automatically determines appropriate policies based on the models

that the programmers provide. To provide this functionality, the AF addresses the

following three questions:

1. How many replicas of an operator need to execute? : To address this question,

the AF monitors the rate that load increases for an operator. LDCs support

meter functionality, and this allows the AF to assign resources more aggres-

sively in cases of quick, large changes and less aggressively to handle small

shifts.

2. When does Lagniappe change the number of replicas? To address this ques-

tion, the AF monitors the queue of requests waiting to be serviced by each

operator. The queuing information for each recipient operator is exported to

the Lagniappe library by the LDCs. The AF uses one of several preconfigured

policies to trigger adaptation. For instance, the AF triggers adaptation if:

(1) the queue length for a recipient operator consistently exceeds a threshold

(determined by the delay tolerance of each operator); or (2) the queue for an

operator remains empty consistently for extended periods of time. Changes

32

in workload volume or composition can cause these changes in the amount of

work for an operator.

3. Where do these replicas execute? : Once an event triggers adaptation, the AF

determines the new resource allocation strategy. The strategy depends upon

the current state of resource allocations and the adaptation trigger. Consider,

for instance, the case where adaptation is triggered when the queue for an

operator instance consistently exceeds a threshold. In this case, if the system

already executes multiple instances of this operator and the queues for other

instances are consistently below the threshold, then the overload at the oper-

ator instance can be handled simply by adjusting the strategy for distributing

load across the multiple operator instances. On the other hand, if the system

is executing only one instance of the operator, then the overload can be han-

dled either by increasing the share of processor capacity being allocated to the

operator or by creating a new operator instance on another processor. In the

latter case, the AF determines on which processor to allocate executing the

new instance of the operator.

Note that the question: “when to adapt?” is a function of application re-

quirements (e.g., delay or throughput bounds) and the system performance. On the

other hand, the question: “where?” depends only on system characteristics (e.g.,

the available number of processing elements and the grouping of processing elements

in memory and processor groups) and is independent of application features. How-

ever, the question of “how many?” is a function of the changes in workload and the

relative performance of remaining system resources.

33

5.2 Programming Environment Implementation

Figure 5.2 shows the high-level architecture of the Lagniappe programming environ-

ment in more detail. We now see several additions from Figure 5.1. First, notice that

we implement the LDC and AF in the Lagniappe library. The Lagniappe library

is a platform-independent library that implements these two key components of the

environment as well as several other mechanisms necessary to the final operation of

the environment.

The three major transformations: 1) Preparing applications for multi-? by

adding LDCs; 2) Integrating the AF; and 3) Binding the implementations all occur

in the Lagniappe compiler. In this chapter we discuss the implementation details of

both the Lagniappe library and the Lagniappe compiler.

5.2.1 Lagniappe Library Implementation

In this section, we examine the abstract class hierarchy that composes the Lagniappe

library and from which programmers derive their application and system implemen-

tations. We also discuss in detail the implementations of several necessary platform-

independent mechanisms.

Library Classes

Figure 5.3 shows the class hierarchy of the application-oriented components of the

Lagniappe library. Note that several of the classes are abstract (indicated by the

italicized names). These classes cannot operate on their own; Lagniappe presents

these as the interfaces that the provided application code implements. However,

it is the definition of these interfaces that allows us to implement the Lagniappe

mechanisms in a way that is completely application-independent.

The Application class is the main container for a programmer-provided

application; it contains a list of references to CoreOp instances. The introduction

34

Lagniappe Library

Application
Model

System
Model

Application
Code

System
Code

Executable Lagniappe
Application

Prepare for Multi-★
with LDCs

Integrate AF

LDC
Implementation

AF
Implementation

Bind implementations

Lagniappe
Compiler

General-Purpose Compiler

Figure 5.2: High-level architecture of the Lagniappe programming environment.

of the CoreOp class allows us to implement two types of abstract operators. The

first is the Operator class. The Operator class is the basic parent class of all the

operators that the Lagniappe compiler generates. All programmer-provided opera-

tors inherit from (and implement the interfaces of) Operator. RequestGenerator,

however, has a different intention. We provide RequestGenerator to provide a

wrapper class for the system-specific implementation of request-generating devices,

whether that be a driver for the ethernet device that generates and sends network

packets or socket-processing code that reads and writes http requests and responses.

The RequestGenerator class provides a clean way for an application programmer

to interface with the underlying system, without having to know any implementa-

35

CoreOp

Operator RequestGenerator

Monitor

RCon RData

MonitorRequest

Mutex

Application

*

1

1

1

1
11

*

Figure 5.3: Class hierarchy of the application-oriented components in the Lagniappe
Library.

tion details. Lagniappe treats RequestGenerator objects as “black boxes” during

runtime, passing requests to and from them as it would to any other CoreOp imple-

mentation.

Each Operator implementation contains a reference to its own Mutex im-

plementation. While the Mutex abstract class is actually a system component that

the system programmer provides, Operator objects have access to this resource to

protect any shared state that their handlers may access. Note, the Operator only

references the Mutex abstract class, thus providing a constant interface to the appli-

cation programmer regardless of the underlying implementation of mutual exclusion

on the platform.

The RCon class implements the request continuations we discuss in Sec-

tion 5.2.1. This class is a simple container comprising a reference to the Operator

class, the name of the specific input Port entity from the application model, and the

RData type. Note, we do not implement a class that represents the Port entity from

36

the application model; the name of the Port is sufficient to find the right handler

code to execute.

RData is a type wrapper around void *. We implement RData so simply to

account for the large variation in request data formats across the full spectrum of

request-processing applications.

Finally, the Monitor class implements the resource-assignment mechanism

and adaptation framework. We discuss this implementation in more detail in Sec-

tion 5.2.1. The MonitorRequest class is a request data type that contains the

different resource requests and responses that the Monitor class can receive and

send, respectively.

ProcElement

System

MemoryMutex

MemGroup

CommChannel

Timer
1

1

11

*

*

1 11

* *

1

*
*

* *

Figure 5.4: Class hierarchy of the system-oriented components in the Lagniappe
Library.

Figure 5.4 shows the class hierarchy of the system-oriented components in

the Lagniappe library. Note that for the system-oriented half of the Lagniappe

library, all the classes are abstract. However, these system classes do implement

a large amount of functionality related to the Lagniappe mechanisms. The classes

in Figure 5.4 all define interfaces for the resource implementations as well as the

system-independent implementations of the Lagniappe mechanisms.

37

The class structure closely follows the system meta-model from Section 4.2.2.

For each of the major system entities, there exists a corresponding class definition.

The System class is the main container for all the system entities.

The ProcElement class represents the main computational resource in a

multi-? system. Each ProcElement instance can call upon a Timer implementation

for profiling purposes. Each ProcElement contains references to the CommChannel

and Memory implementations it uses for inter-processor communication.

The MemGroup objects contain references to the ProcElement objects within

them. Note that there is no class to represent processor groups; the compiler uses

these groups only during compile time. The effects of two ProcElement instanti-

ations being in two different processor groups is noticeable in the relative cost of

intergroup versus intragroup communication mechanisms (e.g. CommChannel imple-

mentations).

Request-Execution Engine

The request-execution engine is the mechanism that allows the main computational

element of Lagniappe, the processing element, to process request data using the

operator code that the programmer provides. To perform this task efficiently, we

introduce the request continuation as the main unit of computation in the Lagniappe

programming environment.

The request continuation builds on the mathematical concept of a contin-

uation, a formalism designed to model “the rest of the computation” in an appli-

cation [39, 41]. Lagniappe models computation as a directed graph of operators,

thus, the subgraph that starts with the current operator and contains all of its chil-

dren contains all the possible computation that request could encounter. Therefore,

given an application subgraph (starting with the entry point of one operator) and

the data from the actual request, a processing element has all the information nec-

38

essary to execute that operator on the request data. Figure 5.5 shows a graphical

representation of a request continuation. As the request data (the gray box) moves

through the application, the possible computation remaining (represented by the

double outline operators) changes.

Figure 5.5: The evolution of the request continuation.

Computation in Lagniappe is straightforward. A processing element entity

removes request continuations from the, possibly many, load-distribution channels

that feed into it. The processing element now has an operator and request data, both

of which it extracts from the request continuation. The processing element executes

the operator on the request data, possibly generating multiple request continuations

in the process. The processing element enqueues these new request continuations

into the LDCs for the operators next in the application graph. The operators can be

running on multiple processing elements; the LDC selects the particular processing

elements.

We implement the Lagniappe request-execution engine inside of the Lagniappe

Library. Lagniappe binds the platform-specific ProcElement implementations to the

Lagniappe request-execution engine, thus enabling the engine to process requests at

run-time.

A ProcElement implementation dequeues RCon instantiations from one of

its several possible incoming CommChannel implementations. The ProcElement ex-

tracts the pointers to the RData and the Operator and the name of the incoming

port. The ProcElement passes the name of the port and the RData to the Operator,

39

where the Operator implementation calls the appropriate handler method. Notice

that a ProcElement blindly executes any Operator and RData combination it re-

ceives from the RCon. We design the execution engine like this so that it is portable

and simple. The engine is not dependent on any aspect of the application. It is the

Adaptation Framework, that we implement as the Monitor class, that determines

where an Operator instantiation can run. Also, there is no dependence on any

specific system properties. The model defines that ProcElement implementations

are associated with incoming CommChannel implementations. How a system pro-

grammer implements the execution core of the ProcElement or the message-passing

functionality of the CommChannel has no bearing on the design or implementation

of the Lagniappe Execution Engine.

Adaptation Framework

The Lagniappe library implements the adaptation framework in the Monitor class.

The Monitor has an incoming and an outgoing connection to every Operator imple-

mentation in the application. Status messages are sent to the Monitor by Operator

implementations when they request some type of run-time system intervention.

Instead of designing a separate subsystem for the Monitor, we implement

the Monitor as a subclass of the Operator class, and have it run on a ProcElement

the same as any of the other Operator implementations in the system. Lagniappe

inserts the Monitor into the application graph with all-to-all connectivity. The

Monitor handles initial resource allocation and makes decisions on how to adapt

that allocation based on workload changes that the ProcElement implementations

observe.

We implement the three major policy decisions of adaptation (how many,

when, and where) in the Monitor class. When an ProcElement instantiation en-

queues an RCon to the next Operator instance, the Operator checks to see if that

40

RCon caused its incoming queue to move beyond a threshold value. If the length

of the queue grows beyond the threshold, the Operator sends a request for more

resources to the Monitor. Upon receipt of a request for more resources, the Monitor

checks to see if any resources are available and, if so, uses the resource-assignment

mechanism to allocate the resource to the operator instance. To decide what to

adapt, the Monitor tracks resource allocations across all memory and processor

groups (it receives the membership information from the system model) and selects

an appropriate ProcElement instance based on the current allocation of Operator

objects to resources. The Monitor also takes into account the communication costs

both in shared-memory and message-passing resources between the original and new

allocation when making its decision.

Changes in the resource allocation necessitate persistent state management if

Lagniappe replicates Operator instances to ProcElement instances that are not in

the same memory group, i.e., ProcElement instances that do not both have access to

a coherent shared memory. The resource assignment mechanism maintains efficient

access to persistent state by moving state to the most local Memory implementation

a ProcElement instance can access, while ensuring correctness. Lagniappe per-

forms this state movement by employing the application-specific state-maintenance

methods the application programmer provides. These methods are black boxes to

Lagniappe; the format and composition of application-specific state is not necessary

for its migration.

5.2.2 Lagniappe Compiler Implementation

The Lagniappe compiler implements the three transforms we discuss in section 5.1.

The Lagniappe compiler generates wrapper classes, inherited from the classes in the

Lagniappe library, around the platform-specific resource implementations and the

application request-processing implementations. The Lagniappe compiler also gen-

41

erates a profiler that measures the execution time of the application. The compiler,

using this profiler data, generates adaptation policies specific to the application

running on the particular multi-? platform. While, ideally, these values would be

determined during runtime, our current implementation uses a profiler, and we dis-

cuss it here or completeness.

In this section, we discuss the steps necessary to compile an application

model, the design and operation of the profiler, the steps necessary to compile a

system model, and how Lagniappe ties these all together to meet the requirements.

However, first we describe the basic implementation of the compiler.

General Implementation Details

The Lagniappe compiler is built using a derivative of ANTLR (ANother Tool for

Language Recognition) [2] called ANTXR (ANother Tool for XML Recognition) [3].

ANTXR allows for the inclusion of XML keywords directly into an ANTLR gram-

mar. We build the logic for code generation and abstract-syntax tree (AST) walking

in Java.

The basic operation of the translator is as follows. ANTXR builds an AST

using the XML-based grammar from the application and system meta-models. For

each entity, we create a Java class that has as private members the properties and

relationships we define in the meta-models.

We implement methods within each of the entity Java classes that generate

the necessary code relative to the specific properties or relationships that entity

maintains. The Lagniappe compiler walks the AST and recursively constructs and

collects the objects. Once the compiler collects all the objects, the compiler generates

specific code based on the mode in which it was run. The programmer selects the

mode by executing the compiler with different command-line flags. The different

modes recognize different ASTs and call different code-generation methods.

42

The application mode generates the C++ implementations of the Operator

entities in the model. The system mode generates the C++ implementations of

the various resource entities in the system model. Lagniappe has a main and prof

mode that generate the main function for the standard application and the profiler,

respectively. Finally, the final mode reads in the profile data and generates the

implementations with the specific adaptation policies included. We now look at the

specific functionality within these translation tasks.

Application Compiler

1 <app l i c a t i on name=”sample”>
<de lay guarantee >10000</de lay guarantee>
<operator name=”net op ” f i l eURI=”NetRequestDevice . hh”

requestGenerator=”true”>
5 . . .

</operator>
<operator name=”s t a t e l e s s o p”>

. . .
</operator>

10 <operator name=”audi t op”>
. . .

</operator>
<operator name=”s t a t e f u l o p”>

. . .
15 </operator>

<connector>
. . .

</connector>
. . .

20 </app l i ca t i on >

Figure 5.6: Lagniappe XML code for the sample application.

The application translator generates classes derived from Operator as well

as an instance of Application that is specific to the particular application model.

To describe this process, we use an example application entitled sample. The XML

Lagniappe model code for this application is shown in Figure 5.6. The details of

the entities are abbreviated, but we explore them as we move through the process

of the application translator.

1. For each Operator entity in the application model, a new class is generated that

is derived from Operator. In the sample application, the compiler generates a

new class for each of the stateless op, audit op, and stateful op entities entitled

43

stateless op, audit op, and stateful op, respectively.

2. For each Port of type INCOMING, the associated Handler is declared as a

private method. For each Port of type OUTGOING, a private method is

declared with the Name of the port. The application programmer uses this

method to send requests from the respective port. Figure 5.7 shows the XML

description of the stateless op operator. It has one Port entity that is marked

as INCOMING, input port. The compiler creates a private method in the

stateless op class called validateRequest. This method has as an argument

a pointer to a NetRequest object, the data from the incoming RCon. The

programmer is expected to provide the implementation of this method. For the

OUT type Port in our example, output port, the compiler creates a private

method by that name that creates an RCon object from the request data passed

to the method. Note, that stateless op has two OUT ports; the second one

is of a different type, NetFlowMessage. The compiler lists the class definition

header files in the include section of the header file for the class stateless op.

1 <operator name=”s t a t e l e s s o p”>
<port name=”input por t”>

<d i r e c t i on >IN</d i r e c t i on >
<handler>val idateRequest </handler>

5 <type name=”NetRequest” f i l eURI=”NetRequest . hh”>
<core type>requestTypes : : NetRequest</core type>

</type>
</port>
<port name=”output port”>

10 <d i r e c t i on >OUT</d i r e c t i on >
<handler>nul l </handler>
<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>
</type>

15 </port>
<port name=”con t r o l p o r t”>

<d i r e c t i on >OUT</d i r e c t i on >
<handler>nul l </handler>
<type name=”NewFlowMessage” f i l eURI=”NetFlowMessage . hh”>

20 <core type>requestTypes : : NewFlow</core type>
</type>

</port>
</operator>

Figure 5.7: Lagniappe XML code for a stateless operator.

3. If an Operator entity is marked as a request generator, the compiler reads the

Port entities associated with this Operator and saves them for later construc-

44

tion of the application graph. In our example, net op is a request generator.

The programmer provides the complete implementation of the net op class

according to the interface for a RequestGenerator object that the Lagniappe

library defines. In our example, net op injects requests of type NetRequest

into the application and accepts NetRequest objects to send somewhere. The

assumption is the system programmer provides this special operator imple-

mentation so that applications can run properly on his or her multi-? system.

4. Each derived instance of Operator contains a pointer to an instance of the

Mutex class. The Mutex pointer allows application programmers to write

thread-safe handlers. The Mutex pointer is initialized during the application

setup to point to a platform-specific mutual exclusion implementation. The

application programmer may treat the Operator instance as a monitor; the

Mutex provides interfaces for locking and unlocking, as well as waiting and

signaling condition variables.

1 <operator name=”s t a t e f u l o p”>
<s t a t e f i l eURI=”Fi leRecord . hh”>

<in it method>f i l e I n i t </init method>
<i n s ta l l method > f i l e I n s t a l l </ins ta l l method >

5 <get method>f i l eGe t </get method>
<purge method>f i l ePurge </purge method>
< f l ow s i g name=”SourceID”>

<core type>requestTypes : : NetRequest</core type>
<get f low ID >getSourceID </get f low ID >

10 </f l ow s i g >
<dataItem name=”fi leLockMap”>

<dataType>std : : map&l t ; lagn iappe : : FlowID ,
s t a t e r e c o r d s : : F i l eRecord p> ;</dataType>

</dataItem>
15 </state >

<port name=”inputPort”>
<d i r e c t i on >IN</d i r e c t i on >
<handler>lookupWebContent</handler>
<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

20 <core type>requestTypes : : NetRequest</core type>
</type>

</port>
<port name=”outputPort”>

<d i r e c t i on >OUT</d i r e c t i on >
25 <handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>
<core type>requestTypes : : NetRequest</core type>

</type>
</port>

30 </operator>

Figure 5.8: Lagniappe XML code for a stateful operator.

5. If the Operator relates to a State entity, the persistent state is declared as

45

a private member variable of the Operator, and the state access methods

are declared as private methods. The compiler generates public wrapper

methods for these private ones. These public methods always support the

same interface; the Lagniappe library can always call the state maintenance

methods regardless of the specific implementations, and it knows nothing of

the internal implementations of these methods. Figure 5.8 shows the state-

ful op operator, and its associated State entity. The compiler declares a pri-

vate member variable fileLockMap of type std::map<lagniappe::flowID,

state records::FileRecord>. The type FileRecord is a user-provided type

that describes the data associated with any particular flow identifier. The defi-

nition of this file is specified in the model in the property FileURI and the com-

piler includes the file (FileRecord.hh) in the generated header file. The pro-

grammer provides four state maintenance methods: fileInit, fileInstall,

fileGet, and filePurge. The compiler declares all four of these methods

as private and, as previously described, wraps the latter three in standard

interface methods. The compiler writes fileInit into the class constructor.

This placement allows the programmers to initialize their persistent state at

startup.

6. If the State relates to a Flow Signature entity, as our stateful op entity does,

the GetFlowID property of the Flow Signature entity is used by the Operator

instance’s load distributor to perform flow-based load distribution (i.e. flow-

pinning). The compiler creates a private method entitled getFlowID that the

programmer may use to get the same flow identifier that Lagniappe uses. Also,

the compiler creates a map from flowID to ProcElement named flowMap. In

our example, the programmer provides a method getSourceID. (Note, the

relationship to a type.) Lagniappe expects the programmer to implement

within the request type definition, not the operator code.

46

7. The load distribution functionality is different depending on whether the State

is associated with a Flow Signature entity. Lagniappe implements the load

distribution policy in a virtual method named getProc. If there is no state if

the state is not flow-indexed, the compiler implements the method as a simple

round-robin that cycles through the list of ProcElement instances that the

monitor has assigned to the Operator. However, if there is flow-indexed state,

the compiler implements flow-pinning. The getProc method takes a pointer

to a RCon and calls the getFlowID method on the properly type-converted

RData. The method looks up the flow identifier of the RData using the provided

method then looks up the flow identifier in the flowMap data structure. If the

corresponding value is empty, it assigns a new ProcElement from the list to

the flow identifier. Otherwise, the method returns the stored ProcElement.

1 <connector>
<con r e f e r ence >net op . out</con r e f e r ence >
<con r e f e r ence >s t a t e l e s s o p . input port </con r e f e r ence >

</connector>
5 <connector>

<con r e f e r ence >s t a t e l e s s o p . output port </con r e f e r ence >
<con r e f e r ence >s t a t e f u l o p . input port </con r e f e r ence >

</connector>
<connector>

10 <con r e f e r ence >s t a t e l e s s o p . con t ro l po r t </con r e f e r ence >
<con r e f e r ence >audi t op . new flows </con r e f e r ence >

</connector>
<connector>

<con r e f e r ence >s t a t e f u l o p . ouput port </con r e f e r ence >
15 <con r e f e r ence >net op . in</con r e f e r ence >

</connector>

Figure 5.9: Lagniappe XML code for the connections between operators.

8. The compiler creates a class that is inherited from the Application class that

implements its two major abstract methods: buildOperators and connect-

Graph. buildOperators iterates through the list of Operator entities and per-

forms the operations we describe in this list for each Operator. connectGraph

iterates through the Connection entities and sets the port connectivity for each

Operator and Port. If an OUTGOING Port is not connected, the application

compiler adds a stub that drops all requests leaving that Port. Figure 5.9

shows the connections in the sample application. Requests flow from the out

47

port of net op to the input port of stateless op. Next, data requests of type

NetRequest leave stateless op and enter the input port of stateful op. How-

ever, requests of type NetRequest leave the control port of stateless op and

enter the new flows port of audit op. Finally, requests of type NetRequest

leave data out on stateful op and exit the system through the in port of net op.

9. The compiler instantiates the Monitor and generates code that connects the

Monitor object to every operator in the application graph, and vice versa.

The Monitor is responsible for allocating the initial mapping of operators

and tracks resource needs and usage. The Monitor responds to requests from

the Operator instances for more resources during runtime when the workload

changes.

10. The application compiler creates the main application file that creates an

instance of both the generated Application class and the System class. It

calls createResources, buildOperators, and connectGraph. Finally, the

main function calls the schedule method of the application to schedule the

operators to resources.

System Compiler

The platform translator generates classes derived from ProcElement, CommChannel,

and Memory. The compiler also generates an instance of System specific to the

system model. Figure 5.10 shows an example of a Lagniappe system model in

XML. We now describe the specific steps of the system compiler:

1. For each Processing Element, Communication Channel, Memory, Timer, and

Mutex entity, a new class is defined that is derived from ProcElement, Comm-

Channel, Memory, Timer, and Mutex, respectively. A private member vari-

able is declared of core type, the type that the platform programmer provides

48

to implement the platform-specific resource. The classes’ respective abstract

methods are instantiated. Figure 5.11 shows the Lagniappe models for two

Processing Element entities that Lagniappe uses to generate the classes Proc0

and Proc1. Figure 5.12 shows the other entities in the system. The compiler

generates message-passing classes CC0 and CC1, a memory resource Mem0, and

a mutual exclusion implementation Mutex0.

1 <system name=”proc2sys”>
<pe name=”Proc0” f i l eURI=”Thread . hh”>

. . .
</pe>

5 <pe name=”Proc1” f i l eURI=”Thread . hh”>
. . .

</pe>
<memory name=”Mem0” f i l eURI=”distMem . h”>

. . .
10 </memory>

<comm channel name=”CC0” f i l eURI=”memQueue . hh”>
. . .

</comm channel>
<comm channel name=”CC1” f i l eURI=”memQueue . hh”>

15 . . .
</comm channel>
<mutex name=”Mutex0” f i l eURI=”simpleMutex . h”>

. . .
</mutex>

20 <mem group name=”memgrp1”>
. . .

</mem group>
</system>

Figure 5.10: Lagniappe XML code for a sample multi-? system.

1 <pe name=”Proc0” f i l eURI=”Thread . hh”>
< i n i t d r i v e r >i n i t </ i n i t d r i v e r >
<k i l l d r i v e r >k i l l </k i l l d r i v e r >
<proc type>IA32</proc type>

5 <core type>Thread</core type>
<t imer name=”timer1 ” f i l eURI=”BasicTimer . h”>

<core type>t imer : : BasicTimer</core type>
<s ta r t >s ta r t </s ta r t >
<stop>stop </stop>

10 </timer>
<chan re f e r ence >CC0</chan re f e r ence >
<chan re f e r ence >CC1</chan re f e r ence >
<mem reference>Mem0</mem reference>
<mtx re ference>Mutex0</mtx re ference>

15 </pe>

Figure 5.11: Lagniappe XML code for a processing element.

2. For the classes derived from Memory and CommChannel, the Bandwidth and La-

tency values are stored as constants within the generated classes. The resource

assignment mechanism uses these values to determine the best channel imple-

mentation to use for pairwise communication between processing elements

49

1 <memory name=”Mem0” f i l eURI=”distMem . h”>
<core type>distMem</core type>
<latency >30</latency>
<bandwidth>100</bandwidth>

5 <r ead dr ive r >Read</r ead dr ive r >
<wr i t e d r i v e r >Write</wr i t e d r i v e r >
<pro c r e f e r en c e >Proc0</p ro c r e f e r en c e >
<mtx re ference>Mutex0</mtx re ference>

</memory>
10 . . .

<comm channel name=”CC0” f i l eURI=”memQueue . hh”>
<core type>memQueue</core type>
<latency >30</latency>
<bandwidth>100</bandwidth>

15 <put dr ive r >push</put dr ive r >
<ge t d r i v e r >pop</ge t d r i v e r >
<pro c r e f e r en c e >Proc0</p ro c r e f e r en c e >
<mtx re ference>Mutex0</mtx re ference>

</comm channel>
20 . . .

<mutex name=”Mutex0” f i l eURI=”simpleMutex . h”>
<core type>simpleMtx</core type>
<lock>lock </lock>
<unlock>unlock </unlock>

25 <wait>wait</wait>
<not i fy >not i fy </not i fy >
<no t i f yA l l >no t i f yA l l </no t i f yA l l >

</mutex>

Figure 5.12: Lagniappe XML code for a communication channel, a memory resource,
and a mutual exclusion resource.

during runtime. As well, the adaptation framework takes these values into

account to determine what resources to use during adaptation. Our example

resources have equal values, as shown in Figure 5.12.

3. The Mutex classes allow the Memory and CommChannel classes to implement

monitor functionality by exporting lock and unlock methods, along with wait-

ing and signalling on condition variables. Lagniappe initializes an instance of

the Mutex class that has a relation the ProcElement classes for each Operator

instance, so that the Operator instances can have monitor functionality.

4. Lastly, an instance of the System class is generated. The abstract method

createResources is implemented. First, Memory and CommChannel classes

are generated for each model instance. Then, the compiler uses the entity

relationships to define the connectivity of the ProcElement instances. In our

example, the Proc0 class sends RCon objects to Proc1 using the CC1 imple-

mentation, and vice versa.

50

5.3 Multi-Machine Lagniappe

For us to expand Lagniappe to run on multiple machines in a coordinated fashion,

several design challenges arise. First, Lagniappe must coordinate resource alloca-

tion decisions across all of the machines. Second, each machine in the cluster can

possibly require access to the resources across all the other machines in the clus-

ter. Finally, resources in the cluster are heterogeneous, for example, communicating

between processors in two different machines is obviously more expensive than com-

municating between processors in the same machine. In this section we discuss how

our design for multi-machine Lagniappe meets these challenges. We also discuss

briefly the main logistical challenge for a system programmer in providing resource

implementations for a multi-machine system: data serialization.

5.3.1 Coordinating Resource Allocation

All resource decisions across the entire multi-machine cluster must be made with

the notion that the local machine is not the only machine in the system. This

knowledge is required to keep resource decisions coherent. We design Lagniappe to

make decisions locally, but broadcast these decisions globally. In more detail, when

an operator on one machine (or more accurately, within a processor group) requests

more resources, the monitor running on that processor group attempts to fulfill the

request with the free processors in the group. If the monitor can, it does, and it

alerts the other monitors of this decision.

However, Lagniappe must handle the case where a monitor cannot handle a

request for more resources locally. At start-up, one monitor assumes the position of

the master and monitors on all other systems become slaves. The master handles

the system-wide decisions that must be made. The programmer selects the master

at start-up by issuing a command to the Lagniappe console on one of the machines.

Once one monitor is the master, it notifies the other monitors in the system with

51

special monitor requests of its status. The master monitor updates all slave monitors

of any non-local resource decisions that it makes.

The master monitor also performs the initial mapping of operator entities

to processing element. The master monitor does not fill up a processor group with

operators. It instead leaves room for replication inside of the processor group.

5.3.2 System-Wide Resource Access

Given the hop-by-hop nature of the request routing in the Lagniappe system, each

processing element resource must be accessible within each processor group. In other

words, when a request leaves an operator, the current processing element looks up

the next-hop operator and then the processing element where that next-hop operator

is running. If the next-hop processing element is on another machine, there is no

way to have a pointer to that remote object. To solve this problem we introduce

the concept of the ghost processor.

A ghost processor exports the interfaces of the ProcElement class, but the

Lagniappe compiler does not link to it the system-specific processor implementation.

Ghost processors are simply placeholders to ensure the routing algorithm works

seamlessly, regardless of the number of processor groups in the system. The monitor

of a processor group also uses the ghost processors in its list of Operator object to

ProcElement object assignments.

5.3.3 Resource Heterogeneity

Multi-machine Lagniappe guarantees the presence of heterogeneous resource types

within the system. For example, the communication cost between machines is guar-

anteed to be higher than that between processors of the same machine. The master

monitor maps the operators of an application to the processing elements of the

system with two guiding principles: 1) leave room within the processor groups to

52

facilitate possible replication and 2) change processor groups a minimal number of

times during initial mapping to introduce the smallest amount of communication

latency possible.

During replication, the monitor replicates an operator within the most local

group possible, either the processor’s memory group or processor group. Only if

there is no more room in the processing groups does the monitor replicate the

operator into another group.

5.3.4 Data Serialization

The main challenge that multi-machine Lagniappe presents to the system program-

mer is to create Communication Channel entity implementations that can serialize

the C++ request continuation structures. To address this challenge, we create a

SerialRCon class that automatically translates the pointer references to Operator

instantiations to the given names of the Operator. While the request data must

still be serialized, the constructors to and from the SerialRCon class automatically

handle the translation from Operator names to Operator objects.

5.4 Requirements Discussion

Once a programmer compiles the application model, runs the profiler, and compiles

the system model, he or she has all the code necessary for a functioning application

that is tuned for the particular multi-? system. We now address how this new

application meets our requirements.

• Automate mapping: The mapping of Operator instances to ProcElement

instances happens automatically. The Monitor instantiation initially maps the

Operator instances, and then handles all further request for resources. The

application programmer does not write any code to map his or her application

53

entities to any hardware resources.

• Efficient resource usage: The Lagniappe Compiler uses the state access

properties of each Operator entity to define a custom load-distribution policy

for the Operator instantiation. The Monitor performs state maintenance (for

when the system replicates the Operator across memory or processor groups,

i.e. where no hardware-coherent memory exists) using the “blackbox” methods

the application programmer provides.

• Adaptation: The profiler automatically determines adaptation thresholds

(answering the question, “when to adapt?”) for the Operator instantiations.

The user-provided request generation methods allow the profiler to perform

an accurate profile of run-times. The compiler answers the question, “How to

adapt?” by using the system model to determine the most efficient resource

to use during adaptation.

• Portability: The separation of the application model from the system model

allows the application programmer to focus purely on his or her application

code. No knowledge of the configuration of the underlying hardware is nec-

essary. A programmer can thus move a Lagniappe application to any multi-?

platform that has a Lagniappe model.

54

Chapter 6

Experimental Evaluation

6.1 Application Description

We test the performance and features of Lagniappe using three applications: naptpt,

attack, and classify. The attack and classify applications operate at the application-

level of the network stack, and the naptpt application operates at the lower pack-

et-level of the network stack [28]. This difference in level helps show Lagniappe’s

generality across the request processing domain.

6.1.1 The naptpt Application

The naptpt application is a simple implementation of network address and port

translation - protocol translation [43]. naptpt provides a gateway between a IPv6 [21]

local network and the IPv4 [13] internet. We also include some basic deep packet

inspection, as one can imagine an application like this running at the internet con-

nection of a small business or home. Appendix A.1 lists the Lagniappe XML code

for the naptpt application.

Figure 6.1 shows the application graph of the naptpt application. naptpt

has three operators: deep-inspect, six-to-four, and four-to-six. Network packets flow

55

IPv6 local
network

IPv4 wide-
area network

deep-inspect

Operator

six-to-four

Operator

four-to-six

Operator

PortPort

Port

Port

Port

Port

PortPort

sixFT
Flow Signature

fourFT
Flow Signature

State

State

State

Channel

Channel

Channel
Channel

Channel

Channel

Figure 6.1: The application graph for the naptpt application.

through the application in two directions, as shown in Figure 6.1 and six-to-four

sends messages to four-to-six when it encounters a new flow of packets.

Network packets from the IPv6 local network flow into the application and

enter the deep-inspect operator. The deep-inspect operator removes the packet head-

ers and scans the payload for patterns that may indicate the packet contains either

signatures of some type of attack or content that the application programmer wants

to block. If any of the searches find objectionable content, deep-inspect records this

information in a record tied to the flow ID of the packet. Flow IDs for the deep-

inspect operator are determined by a packet’s IP source and destination address,

TCP source and destination port, and the protocol identifier from the IP header.

These five fields of information are commonly referred to as the packet’s five-tuple.

If the flow has had more than some threshold of infractions, the packet is (and all

future packets from that flow are) destroyed. However, if the packet passes all the

inspections, deep-inspect sends the packet out its only OUTGOING port.

The six-to-four operator takes TCP/IPv6 packets and translates them to a

valid IPv4/TCP packet. The operator sets the IPv4 source address of the server’s

56

IPv4 network interface as the IPv4 as the IPv4 source address in the new packet.

The destination in our small application is always the same; however, there are

accepted ways to embed IPv4 addresses in IPv6 addresses in the literature [17].

The TCP destination port remains the same; however, the operator determines the

TCP source port based on the flow ID of the IPv6 packet. If the operator has seen

this flow before, it simply uses the source port in the saved flow state. However, if

the flow is new, the operator creates a new port number specifically for this flow

and saves the port to the corresponding flow state. The operator packages the

IPv6 five-tuple and new IPv4 five-tuple in a control message and sends it to the

four-to-six operator for processing. six-to-four calculates checksums for both the

IP layer and the TCP layer. Finally, six-to-four writes the appropriate ethernet

MAC addresses to the packet data. The operator then sends the packet out the

appropriate OUTGOING port.

The four-to-six operator first looks up flow state for an incoming IPv4 packet

according to the packet’s five-tuple. If the flow-state does not exist, the operator

drops the packet as this packet is from an unsolicited flow. If the flow state exists,

the operator creates a new IPv6 header and sets the source and destination addresses

from the flow state. The operator also sets the TCP source and destination ports

from the flow state. four-to-six then sets the TCP checksum and sends the packet

out its only OUTGOING port.

When the four-to-six operator receives a new control message from the six-

to-four operator, it initializes a new flow state record with the two five-tuples (IPv4

and IPv6) in the message. The operator now accepts any incoming IPv4 packets

that have the corresponding five-tuple flow ID.

57

6.1.2 The attack Application

The attack application implements a simple webserver with some increased security-

oriented functionality. The application performs a two-level inspection to identify

intrusions and attacks efficiently. Also, we model the computation necessary to

encrypt and sign the file data being fetched and sent to the remote client. Ap-

pendix A.2 lists the Lagniappe XML code for the attack application.

validate

Operator

Port
Port

Port

shallow

Operator

Port
Port

Port

deep

Operator

Port
Port

Port

lookup

Operator

Port Port

SourceID
Flow Signature

StateState

Channel

ChannelChannel

Channel
Channel

Channel

Figure 6.2: The application graph for the attack application.

Figure 6.2 shows the application graph for the attack application. The ap-

plication comprises four operators: validate, shallow, deep, and lookup. The dotted

lines signify control messages that deep and shallow send back to validate when

their respective tests find positive signs of intrusion or attack. Requests that are

not dropped for being malicious move to the lookup operator where the operator

reads the appropriate file, does some security processing, and serves the file to the

client.

The validate operator has two major functions: validate the http request

and check to see if the flow has been marked as suspicious or dangerous. First, the

58

operator parses the http request string and extracts the file name. If the request is

not valid, validate drops the request. If the request is valid, the operator looks up

the flow according to a combination of source address, source port, and file name.

A flow can be in three possible states: INNOCENT, SUSPICIOUS, and GUILTY.

If a flow is marked as INNOCENT, the operator forms a new request with the file

name, source address, and source port and sends it out the data port for innocent

requests. If a flow is marked as SUSPICIOUS, the operator similarly creates a new

request and sends it out the data port for suspicious packets. Finally, if the flow is

marked as GUILTY, the operator drops the request.

The validate operator’s control message handler simply updates flow state

with the appropriate values depending on the message. If the operator receives a

message from shallow marking a flow as SUSPICIOUS, validate updates the state

appropriately. Similarly, validate may receive messages from the deep operator

marking a flow as either INNOCENT or GUILTY, and the validate operator marks

the flow state appropriately.

The shallow operator performs a simple length check on the file name of an

incoming request. If the check fails, the operator sends a control message back to

the validate operator marking the flow as SUSPICIOUS. Regardless, the shallow

operator forwards the request on to the lookup operator.

The deep operator performs a suite of checks looking for malicious flows based

on the content of the requests. If it does not find anything, the operator reports

back to the validate operator with an INNOCENT control message. If the tests

fail, the deep operator reports back to the validate operator with a GUILTY control

message.

The validate operator starts by looking up the flow information about an

incoming request and getting a lock on the flow state. The operator then reads the

requested file from the local file system and puts this data into a new request. The

59

operator then uses the read file data to model security processing (signatures). We

add this step to model a login or secure web application. After the signatures are

updated, the operator releases the lock and sends the newly formed request out its

data port.

6.1.3 The classify Application

The classify application implements a webserver that classifies and distributes in-

coming requests to different operators for file lookup based on the contents of the

request. The main difference between this application and attack is that two of the

operators in classify are of equal weight in terms CPU utilization, and thus can

showcase Lagniappe’s handling of changes in workload composition during runtime.

Appendix A.3 lists the Lagniappe XML code for the classify application.

long

Operator

Port Port

State

validate

Operator

Port
Port

Port
SourceID

Flow Signature

State

short

Operator

Port Port

Channel

Channel

Figure 6.3: The application graph for the classify application.

Figure 6.3 shows the application graph for the classify application. The

application has three operators: validate, short, and long. The validate operator

60

takes incoming http requests, validates their format, and extracts the requested file

name. Shorter length file names are sent out the short requests output port and

longer length file names are sent out the long requests output port.

The short and long operators are actually identical in composition. They

each have one input port and one output port. The operators extract the file names

from the incoming request, perform the file read and a simple signature generation,

and then send the read file data out the OUTGOING port. The handler locks the

operator during the file read and signature generation as in the attack application.

Again, we use this application to model multiple operators with similar run-times.

6.2 Experimental Setup

We have two 1.6 GHz Pentium Xeon four-way, quad-core servers that serve as our

primary multi-? cluster. These servers provide sixteen cores each. We equip each

server with Intel Pro dual-port, gigabit ethernet interfaces. One machine is equipped

with 128 GBs of memory and the other is equipped with 16 GBs of memory. We

use the larger capacity machine to run our Lagniappe applications and the lower

capacity machine generates workload.

SOURCE SERVER SINK

1 Gbps Shared LAN

4x4-Core
16 GB RAM

4x4-Core
128 GB RAM

1 Proc
1 GB RAM

Figure 6.4: Physical setup of the experimental testbed for the naptpt experiments.

Figure 6.4 shows the connectivity between the machines for the naptpt ex-

61

periments. For the naptpt experiments, we also use a single-processor 3.00 GHz

Pentium Xeon server as a sink for our TCP streams. We refer to the low-capacity,

four-way machine as Source, the high-capacity, four-way machine as Server, and

the single-processor machine as Sink. All three machines are connected to each

other across a gigabit LAN.

SOURCE1 SERVER

1 Gbps Shared LAN

4x4-Core
16 GB RAM

4x4-Core
128 GB RAM

1 Gbps Shared LAN

SOURCE2 SOURCE6SOURCE5SOURCE4SOURCE3

1x2-Core
2 GB RAM

Figure 6.5: Physical setup of the experimental testbed for the attack experiments.

Figure 6.5 shows the connectivity between the machines for the attack ex-

periments. Source1 and Server are connected as in the naptpt case. However, a

load on Server larger than fifty simultaneous clients overwhelms the machine, so

we use Server2 through Server6 to step up the load with ten simultaneous clients

running on each between fifty total clients and one-hundred total clients.

The experimental setup for the classify application is identical to that of the

attack application.

62

For both experiments, we run varying numbers of clients on Source. For

the attack application, a client requests a series of webpages at approximately 1.7

kilo-requests per second. For the classify application, half of the clients request

one particular webpage and the other half request the another. For the naptpt

application, each client is a simple TCP stream that attempts to send data at 10 Mb

per second. Notice the difference in units between the two applications. In the attack

application, the files the application serves are small (156 Bytes). Larger file sizes

make the bandwidth of the network connection the limiting factor in performance.

By using small file sizes we can greater exercise the Server machine and Lagniappe

by determining how many aggregate requests could be processed per unit time. We

use Mb/s in the naptpt application because the application never approaches the

network connections total bandwidth and because we use TCP requests of uniform

length.

6.3 Experimental Results

We show three sets of results that show the benefits and features of the Lagniappe

Programming Environment. The first set of results shows how without any changes

to an application, Lagniappe takes advantage of increased resources to deliver higher

performance. The second set of results shows how Lagniappe can adapt the resource

usage of an application to adjust to changes in workload. The final set of results

shows the benefit of Lagniappe’s use of state-access semantics when determining a

load-distribution policy for an application’s components.

6.3.1 Applications Automatically Use Resources

Figure 6.6 shows the throughput in Mb/s on the y-axis as we increase load on the

x-axis. The clients are running on the Source machine and the Sink machine is

running a simple TCP receiver. The Server machine sits in the middle running

63

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
b/

s)

Number of Concurrent Clients

1
2
4
6
8

12
16

Figure 6.6: Throughput for naptpt for different processor configurations and differ-
ent workloads.

naptpt. As we increase the number of processors available in the system, the total

throughput of naptpt increases. The only exceptions to this are in the cases of one,

two, and four processors. In these configurations, there are more operators than

processors, and thus, we are not able to take advantage of the extra parallelism

through replication. The increased cost of using multiple processors (for example,

going outside of cache to pass requests) actually causes the throughput to drop as

we increase up to four processors under low loads. However, after the number of

processors is greater than the number of operators, the gains from replication greatly

outnumber the added communication costs.

Figure 6.7 shows a similar situation for the attack application, except that

here the y-axis represents throughput in Kilorequests/s. Once the number of pro-

cessors increases beyond the number of operators, the deliverable throughput of the

attack application increases.

When we move from 12 processors to 16 processors in the attack application,

64

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
R

eq
s/

s)

Number of Concurrent Clients

1
2
4
6
8

12
16

Figure 6.7: Throughput for attack for different processor configurations and different
workloads.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 C

P
U

 C
yc

le
s

Number of Concurrent Clients

12
16

Figure 6.8: Comparison of average processor idle time for the attack application
between the twelve and sixteen processor cases.

65

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
R

eq
s/

s)

Number of Concurrent Clients

1
2
4
6
8

12
16

Figure 6.9: Throughput for classify for different processor configurations and differ-
ent workloads.

we do not see a large increase in throughput. When we add four more processors,

the utilization of the processors drops, as Figure 6.8 shows.

Figure 6.9 shows a different throughput curve than the other two applications

present. The classify application does not have one operator that is much heavier

than the rest in terms of computation. In fact, all the operators are relatively

lightweight. Thus, classify maximizes its throughput at a much lower number of

processors than the other two applications. More processors just adds more overhead

with overall gain in throughput. Note, in contrast to the naptpt and attack applica-

tions, throughput increases with four processors. This difference is because classify

only has three operators, and the workload is split evenly between them. Thus, once

short and long have their own processor, they can increase their throughput.

66

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
R

eq
/s

)

Number of Concurrent Clients

Lagniappe
No State

Figure 6.10: Throughput comparison to not using state information for load distri-
bution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 C

P
U

 C
yc

le
s

Number of Concurrent Clients

L:User
L:Idle

NS:User
NS:Idle

Figure 6.11: Time spent processing and idle for both Lagniappe and a system that
does not use state information for load distribution.

67

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
R

eq
s/

s)

Number of Critical Section Key Ops

Lagniappe
NS

Figure 6.12: Throughput of Lagniappe and the NoState system as the size of the
critical section changes for the attack application.

6.3.2 Lagniappe Reduces Contention

Figure 6.10 shows the throughput from the attack application shown in the 16-

processor case in Figure 6.7 compared to the throughput of the same setup, but

with no use of the state-access semantics by Lagniappe. We refer to this setup as

the NoState system. The y-axis is throughput in Kilorequests/s and the x-axis is

number of clients. We see that the NoState case performs worse than the standard

Lagniappe case by 8.3%.

This result is to be expected; by abandoning flow-based request distribution,

the NoState case increases contention and thus processors spend more time idle and

not processing requests. We show this drop in processor utility in Figure 6.11. When

a processor attempts to acquire a lock that is active, the processor is put to sleep

and the operating system counts the cycles as idle. For the Lagniappe case, we see

more time spent active in user mode (i.e. time spent actually processing requests)

68

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

P
er

ce
nt

ag
e

C
P

U
 C

yc
le

s

Number of Critical Section Key Ops

L:User
NS:User

L:Idle
NS:Idle

Figure 6.13: User and idle CPU utilization of the Lagniappe and NoState systems
for the attack application as the size of the critical section changes.

and less time spent idle (i.e. time spent waiting on locks) than in the NoState case.

We now explore the range of difference between the performance of Lagniappe

and the NoState case with differing critical section size. In Figure 6.12 we see the

throughput of the Lagniappe system and the NoState system as we increase the

number of signature-generation steps on the x-axis. We see the difference climb

to 12.3% with the large 50-operation critical section. Even with just one signature

generation, we see an improvement of 6.1% from using the state information to make

load-distribution decisions (note, Lagniappe performs this task automatically).

Figure 6.13 explains the difference in throughput. In this graph the x-axis

is the same as before, but the y-axis is percentage of CPU cycle usage. We see the

difference between both User and Idle time increase, however, the massive increase

in Idle time, almost 90% for the largest critical section, shows the amount of time

spent waiting on locks increasing as the critical section increases. Lagniappe can au-

tomatically generate a load-distribution policy that takes the state access semantics

69

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

Average

Figure 6.14: Throughput for naptpt over time as load increases to show adaption of
resource usage with increasing load.

into account and pins flows to processing elements, providing the types of benefits

we see over an state-agnostic system in these graphs.

6.3.3 Lagniappe Adapts to Changes in Workload

Figure 6.14 shows the throughput averages over five-second intervals that we sample

over the course of a three minute-period. The y-axis represents throughput in Mb/s

and the x-axis is time. Every thirty seconds (represented by the vertical lines) we

increase the load. The horizontal lines represent the average throughput during the

entire thirty second period. We see that Lagniappe allows the naptpt application to

add more resources as they are needed and allows the average throughput that the

application produces to increase.

Figure 6.15 shows a similar graph for the attack application. In this case,

we again measure throughput on the y-axis in terms of Kilorequests/s. Figure 6.16

70

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

K
R

eq
s/

s)

Time (s)

Average

Figure 6.15: Throughput for attack over time as load increases to show adaptation
of resource usage with increasing load.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 P

ro
ce

ss
or

s

Time (s)

lookup

Figure 6.16: Number of processors assigned to the lookup operator during the ex-
periment.

71

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 P

ro
ce

ss
or

s

Time(s)

short
long

Figure 6.17: The number of processors assigned to operators in the classify appli-
cation as the workload changes over time.

shows the number of processors that Lagniappe assigns to the lookup operator. We

see as the workload increases Lagniappe provides more resources to the heavy-weight

operator.

In Figure 6.17 we show the how the classify application deals with changes,

not in workload volume as in the previous two experiments, but in workload com-

position. On the y-axis, we show the number of processors assigned to an operator.

On the x-axis, we show time in seconds. In this experiment we start with twelve

clients exercising the short operator. At the halfway mark (90 seconds) we add

another twelve clients; however, these are generating workload that exercises the

long operator. We see that the adaptation framework assigns the long operator

processing resources. The long operator does eventually pass short, but they reach

a relatively steady state.

72

Chapter 7

Conclusion

In this dissertation we describe the Lagniappe Programming Environment. Lagniappe

allows programmers to design and implement high-throughput request-processing

applications that automatically take advantage of multi-? resources.

Lagniappe makes the following four key contributions: First, Lagniappe de-

fines and uses a unique hybrid programming model that separates the concerns of

writing applications for uni-processor, single-threaded execution platforms (single-?

systems) from the concerns of writing applications necessary to efficiently execute

on a multi-? system. We provide separate tools to the programmer to address each

set of concerns. Second, we present meta-models of applications and multi-? sys-

tems that identify the necessary entities for reasoning about the application domain

and multi-? platforms. Third, we design and implement a platform-independent

mechanism called the load-distributing channel that factors out the key functional-

ity required for moving an application from a single-? architecture to a multi-? one.

Finally, we implement a platform-independent adaptation framework that defines

custom adaptation policies from application and system characteristics to change

resource allocations with changes in workload. Furthermore, applications written in

the Lagniappe programming environment are portable; we further separate the con-

73

cerns of application programming from system programming in the programming

model.

We implement Lagniappe on a cluster of servers each with multiple multicore

processors. We demonstrate the generality of Lagniappe by implementing several

stateful request-processing applications. We show that our implementation achieves

three goals: 1) Lagniappe applications use all resources in a multi-? system without

any explicit resource knowledge; 2) Lagniappe increases throughput by guaranteeing

efficient state access through custom policy generation based on the statefulness of

operators; and 3) Lagniappe automatically adapts to changes in both workload

volume and composition.

74

Appendix A

Lagniappe Source Code for

Applications

A.1 The naptpt Application

<app l i c a t i on name=”naptpt”>

<de lay guarantee >1000</de lay guarantee>

<operator name=”eth0 ” f i l eURI=”Phys Inte r face . hh” requestGenerator=”true”>

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<core type>r eques tDev i ce s : : PhysInter face </core type>

</operator>

<operator name=”eth1 ” f i l eURI=”Phys Inte r f aceS ix . hh” requestGenerator=”true”>

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

75

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<core type>r eques tDev i ce s : : PhysInter faceS ix </core type>

</operator>

<operator name=” f o u r t o s i x o p”>

<s t a t e f i l eURI=”SixMap . hh”>

<in it method>my init </init method>

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=” f i v e t u p l e”>

<core type>pktTypes : : Packet</core type>

<get f low ID >getUDPFiveTupleID</get f low ID >

</f l ow s i g >

<dataItem name=”flowMapping”>

<dataType>std : : map&l t ; lagn iappe : : FlowID , SixMap p> ;</dataType>

</dataItem>

<dataItem name=”dstAddr”>

<dataType>in6 addr </dataType>

</dataItem>

</state >

<port name=”data in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>handleMyPort</handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<port name=”data out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<port name=”new connect ion in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>newConnection</handler>

<type name=”ConnInfo” f i l eURI=”ConnInfo . hh”>

<core type>requestTypes : : ConnInfo</core type>

</type>

</port>

</operator>

<operator name=”s i x t o f o u r o p”>

<s t a t e f i l eURI=”FourMap . hh”>

<in it method>my init </init method>

76

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=”s i x f i v e t u p l e ”>

<core type>pktTypes : : Packet</core type>

<get f low ID >getUDPSixFiveTupleID</get f low ID >

</f l ow s i g >

<dataItem name=”flowMapping”>

<dataType>std : : map&l t ; lagn iappe : : FlowID , FourMap p> ;</dataType>

</dataItem>

<dataItem name=”currPort”>

<dataType>uint32 t </dataType>

</dataItem>

<dataItem name=”srcAddr”>

<dataType>uint32 t </dataType>

</dataItem>

<dataItem name=”dstAddr”>

<dataType>uint32 t </dataType>

</dataItem>

</state >

<port name=”data in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>handleMyPort</handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<port name=”data out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<port name=”new connect ion out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”ConnInfo” f i l eURI=”ConnInfo . hh”>

<core type>requestTypes : : ConnInfo</core type>

</type>

</port>

</operator>

<operator name=”deep in spec t op”>

<s t a t e f i l eURI=”InspectRecord . hh”>

<in it method>my init </init method>

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=”s i x f i v e t u p l e ”>

<core type>pktTypes : : Packet</core type>

<get f low ID >getUDPSixFiveTupleID</get f low ID >

</f l ow s i g >

<dataItem name=”flowMapping”>

77

<dataType>std : : map&l t ; lagn iappe : : FlowID , InspectRecord p> ;</dataType>

</dataItem>

</state >

<port name=”data in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>handleMyPort</handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

<port name=”data out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”Packet” f i l eURI=”Packet . hh”>

<core type>pktTypes : : Packet</core type>

</type>

</port>

</operator>

<connector>

<con r e f e r ence >eth1 . out</con r e f e r ence >

<con r e f e r ence >deep in spec t op . data in </con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >deep in spec t op . data out </con r e f e r ence >

<con r e f e r ence >s i x t o f o u r o p . data in </con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >s i x t o f o u r o p . data out </con r e f e r ence >

<con r e f e r ence >eth0 . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >eth0 . out</con r e f e r ence >

<con r e f e r ence >f o u r t o s i x o p . data in </con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >f o u r t o s i x o p . data out </con r e f e r ence >

<con r e f e r ence >eth1 . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >s i x t o f o u r o p . new connect ion out </con r e f e r ence >

<con r e f e r ence >f o u r t o s i x o p . new connect ion in </con r e f e r ence >

</connector>

</app l i ca t i on >

A.2 The attack Application

<app l i c a t i on name=”attack”>

<de lay guarantee >100000</de lay guarantee>

<operator name=”net1 ” f i l eURI=”NetRequestDevice . hh” requestGenerator=”true”>

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

78

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<core type>r eques tDev i ce s : : NetRequestDevice</core type>

</operator>

<operator name=”va l i da t e op”>

<s t a t e f i l eURI=”FlowRecord . hh”>

<in it method>my init </init method>

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=” f i v e t u p l e”>

<core type>requestTypes : : NetRequest</core type>

<get f low ID >getSourceID </get f low ID >

</f l ow s i g >

<dataItem name=”flowStateMap”>

<dataType>std : : map&l t ; lagn iappe : : FlowID , s t a t e r e c o r d s : : FlowRecord p> ;</dataType>

</dataItem>

</state >

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>val idateRequest </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”con t r o l”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>newControlMessage</handler>

<type name=”ControlMessage ” f i l eURI=”ControlMessage . hh”>

<core type>requestTypes : : ControlMessage </core type>

</type>

</port>

<port name=”va l i d r e qu e s t s”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”su s p i c i o u s r e qu e s t s”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

79

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

<operator name=”sha l low op”>

<port name=”data in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>sha l lowInspect </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”con t r o l ou t”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”ControlMessage ” f i l eURI=”ControlMessage . hh”>

<core type>requestTypes : : ControlMessage </core type>

</type>

</port>

<port name=”data out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

<operator name=”deep op”>

<port name=”data in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>deepInspect </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”con t r o l ou t”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”ControlMessage ” f i l eURI=”ControlMessage . hh”>

<core type>requestTypes : : ControlMessage </core type>

</type>

</port>

<port name=”data out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

<operator name=”lookup op”>

<s t a t e f i l eURI=”Fi leRecord . hh”>

<in it method>my init </init method>

80

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=” f i v e t u p l e”>

<core type>requestTypes : : NetRequest</core type>

<get f low ID >getSourceID </get f low ID >

</f l ow s i g >

<dataItem name=”fi leLockMap”>

<dataType>std : : map&l t ; lagn iappe : : FlowID , s t a t e r e c o r d s : : F i l eRecord p> ;</dataType>

</dataItem>

</state >

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>lookupWebContent</handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

<connector>

<con r e f e r ence >net1 . out</con r e f e r ence >

<con r e f e r ence >va l i da t e op . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >va l i da t e op . v a l i d r e qu e s t s </con r e f e r ence >

<con r e f e r ence >sha l low op . data in </con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >va l i da t e op . s u sp i c i o u s r e qu e s t s </con r e f e r ence >

<con r e f e r ence >deep op . data in </con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >sha l low op . data out </con r e f e r ence >

<con r e f e r ence >lookup op . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >deep op . data out </con r e f e r ence >

<con r e f e r ence >lookup op . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >sha l low op . cont ro l out </con r e f e r ence >

<con r e f e r ence >va l i da t e op . contro l </con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >deep op . cont ro l out </con r e f e r ence >

<con r e f e r ence >va l i da t e op . contro l </con r e f e r ence >

81

</connector>

<connector>

<con r e f e r ence >lookup op . out</con r e f e r ence >

<con r e f e r ence >net1 . in</con r e f e r ence >

</connector>

</app l i ca t i on >

A.3 The classify Application

<app l i c a t i on name=” c l a s s i f y ”>

<de lay guarantee >10000</de lay guarantee>

<operator name=”net1 ” f i l eURI=”NetRequestDevice . hh” requestGenerator=”true”>

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<core type>r eques tDev i ce s : : NetRequestDevice</core type>

</operator>

<operator name=”va l i da t e op”>

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>val idateRequest </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”sho r t r e qu e s t s”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”l ong r equ e s t s”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

82

<operator name=”shor t l ookup op”>

<s t a t e f i l eURI=”Fi leRecord . hh”>

<in it method>my init </init method>

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=” f i v e t u p l e”>

<core type>requestTypes : : NetRequest</core type>

<get f low ID >getSourceID </get f low ID >

</f l ow s i g >

<dataItem name=”fi leLockMap”>

<dataType>std : : map&l t ; lagn iappe : : FlowID , s t a t e r e c o r d s : : F i l eRecord p> ;</dataType>

</dataItem>

</state >

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>lookupWebContent</handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

<operator name=”long lookup op”>

<s t a t e f i l eURI=”Fi leRecord . hh”>

<in it method>my init </init method>

<i n s ta l l method >my ins ta l l </ins ta l l method >

<get method>my get</get method>

<purge method>my purge</purge method>

< f l ow s i g name=” f i v e t u p l e”>

<core type>requestTypes : : NetRequest</core type>

<get f low ID >getSourceID </get f low ID >

</f l ow s i g >

<dataItem name=”fi leLockMap”>

<dataType>std : : map&l t ; lagn iappe : : FlowID , s t a t e r e c o r d s : : F i l eRecord p> ;</dataType>

</dataItem>

</state >

<port name=”in”>

<d i r e c t i on >IN</d i r e c t i on >

<handler>lookupWebContent</handler>

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

<port name=”out”>

<d i r e c t i on >OUT</d i r e c t i on >

<handler>nul l </handler>

83

<type name=”NetRequest” f i l eURI=”NetRequest . hh”>

<core type>requestTypes : : NetRequest</core type>

</type>

</port>

</operator>

<connector>

<con r e f e r ence >net1 . out</con r e f e r ence >

<con r e f e r ence >va l i da t e op . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >va l i da t e op . sho r t r eque s t s </con r e f e r ence >

<con r e f e r ence >shor t l ookup op . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >va l i da t e op . l ong r eque s t s </con r e f e r ence >

<con r e f e r ence >l ong lookup op . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >shor t l ookup op . out</con r e f e r ence >

<con r e f e r ence >net1 . in</con r e f e r ence >

</connector>

<connector>

<con r e f e r ence >l ong lookup op . out</con r e f e r ence >

<con r e f e r ence >net1 . in</con r e f e r ence >

</connector>

</app l i ca t i on >

84

Bibliography

[1] AMD Quad-Core Opteron. http://www.amd.com/opteron/.

[2] ANTLR, ANother Tool for Language Recognition. http://www.antlr.org.

[3] ANTXR, ANother Tool for XML Recognition.

http://javadude.com/tools/antxr/index.html.

[4] Apple Snow Leopard. http://www.apple.com/macosx/snowleopard/.

[5] Intel IXP Family of Network Processors. http://www.intel.com/ design/net-

work/products/npfamily/.

[6] Intel Multi-Core: An Overview. http://www.intel.com/multi-

core/overview.htm.

[7] OpenCL: What You Need to Know. http://www.macworld.com/article/134858/2008/08/snowleopard opencl.html.

[8] Snort: The Open Source Network Intrusion Detection System.

http://www.snort.org/.

[9] Sun UltraSPARC T2 Processor - Overview. http://www.sun.com/

processors/UltraSPARC-T2/.

[10] VMWare. http://www.vmware.com/.

[11] VMotion. http://www.vmware.com/products/vi/vc/vmotion.html.

85

[12] XenSource. http://www.citrixxenserver.com/Pages/default.aspx.

[13] Internet Protocol. IETF RFC 791, September 1981.

[14] J. Andrews and N. Baker. XBox 360 System Architecture. In IEEE MICRO,

26(2), 2006.

[15] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands Kurt Keutzer, David A. Patterson, William Lester Plishker,

John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape of

Parallel Computing Research: A View from Berkeley. University of California

at Berkeley, Technical Report UCB/EECS-2006-183, December 2006.

[16] Brendan Burns, Kevin Grimaldi, Alex Kostadinov, Emery Berger, and Mark

Corner. Flux: A Language for Programming High-Performance Servers. In

Proceedings of the USENIX Annual Technical Conference, 2006.

[17] B. Carpenter and K. Moore. Connection of IPv6 Domains Via IPv4 Clouds.

http://tools.ietf.org/html/rfc3056, February 2001.

[18] Benjie Chen and Robert Morris. Flexible Control of Parallelism in a Multipro-

cessor PC Router. In Proceedings of the USENIX Annual Technical Conference,

pages 333-346, Boston, Massachusetts, June 2001.

[19] Michael K. Chen, Xiao-Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu, Tao Liu,

and Roy Ju. Shangri-La: Achieving High Performance from Compiled Net-

work Applications While Enabling Ease of Programming. In Proceedings of the

SIGPLAN Conference on Programming Language Design and Implementation,

Chicago, Illinois, June 2005.

[20] David Culler, Richard Karp, Ramesh Subramonian, and Thorsten Von Eicken.

LogP: Towards a Realistic Model of Parallel Computation. In Proceedings of

86

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 1–12, San Diego, California, May 1993.

[21] S. Deering, Cisco, R. Hinden, and Nokia. Internet Protocol, Version 6 (IPv6)

Specification. http://tools.ietf.org/html/rfc2460, December 1998.

[22] Will Eatherton. The Push of Network Processing to the Top of the Pyramid.

In Proceedings of the ACM/IEEE Symposium on Architectures for Networking

and Communications Systems, Princeton, New Jersey, October 2005.

[23] Philip Emma. The End of Scaling? Revolutions in Technology and Microarchi-

tecture as We Pass the 90 Nanometer Node. In Proceedings of the International

Symposium on Computer Architecture, Boston, Massachusetts, June 2006.

[24] David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer, and

David Culler. The nesC Language: A Holistic Approach to Networked Em-

bedded Systems. In Proceedings of the SIGPLAN Conference on Programming

Language Design and Implementation, San Diego, California, June 2003.

[25] Lal George and Matthias Blume. Taming the IXP Network Processor. In

Proceedings of the SIGPLAN Conference on Programming Language Design

and Implementation, pages 26–37, San Diego, California, June 2003.

[26] Jayanth Gummaraju, Joel Coburn, Yoshio Turner, and Mendel Rosen-

blum. Streamware: Programming General-Purpose Multicore Procesors Us-

ing Streams. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 297-307,

Seattle, Washington, March 2008.

[27] Peter Hofstee. Power Efficient Processor Architecture and the Cell Proces-

sor. In Proceedings of the International Conference on High-Performance Com-

87

puter Architecture, IEEE Computer Society, San Francisco, California, Febru-

ary 2005.

[28] ITU-T. INformation TEchnology - OPen SYstems INterconnection - BAsic

REference MOdel. Recommendation X.200, July 1994.

[29] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in

Dataflow Programming Languages. In ACM Computing Surveys, 36(1):1–34,

March 2004.

[30] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. Addison-Wesley,

Boston, Massachusetts, 2003.

[31] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The Click Modular Router. In ACM Transactions on Computer

Systems, 18(3):263–297, August 2000.

[32] Ravi Kokku, Taylor L. Riché, Aaron Kunze, Jayaram Mudigonda, Jamie Jason,

and Harrick M. Vin. A Case for Run-Time Adaptation in Packet Processing

Systems. In Proceedings of the Workshop on Hot Topics in Networks, Boston,

Massachusetts, November 2003.

[33] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events Can Make

Sense. In Proceedings of the USENIX Annual Technical Conference, Santa

Clara, California, June 2007.

[34] Peng Li and Steve Zdancewic. Combining Events and Threads for Scalable

Network Services. In Proceedings of the SIGPLAN Conference on Programming

Language Design and Implementation, 2007.

[35] Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng.

Merge: A Programming Model for Heterogeneous Multi-Core Systems. In Pro-

88

ceedings of the International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 287–296, Seattle, Washington,

March 2008.

[36] Michael Macedonia. The GPU Enters Computing’s Mainstream. In IEEE

Computer, 36(10):106–108, 2003.

[37] Jayaram Mudigonda. Addressing the Memory Bottleneck in Packet Processing

Systems. Ph.D. Thesis, The University of Texas at Austin, 2005.

[38] George A. Papadopoulos and Farhad Arbab. Coordination Models and Lan-

guages. In Advances in Computers, 46, August 1998.

[39] John C. Reynolds. The Discoveries of Continuations. In LISP and Symbolic

Computation: An International Journal, 6:233–247, 1993.

[40] Taylor L. Riché, Jayaram Mudigonda, and Harrick M. Vin. Experimental Eval-

uation of Load Balancers in Packet Processing Systems. In Workshop on Build-

ing Block Engine Architectures for Computers and Networks, Boston, MA, Oc-

tober 2004.

[41] Christopher Strachey and Christopher P. Wadsworth. Continuations: A Math-

ematical Semantics for Handling Full Jumps. In Journal of Higher-Order and

Symbolic Computation, 13:135–152, 2000.

[42] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A

Language for Streaming Applications. In Proceedings of the International Con-

ference on Compiler Construction, Grenoble, France, April 2002.

[43] G. Tsirtsis and P. Srisuresh. Network Address Translation - Protocol Transla-

tion (NAT-PT). IETF RFC 2766, 2000.

89

[44] Jonathan S. Turner. A Proposed Architecture for the GENI Backbone Platform.

In Proceedings of the ACM/IEEE Symposium on Architectures for Networking

and Communications Systems, San Jose, California, October 2006.

[45] Gautam Upadhyaya, Vijay S. Pai, and Samuel P. Midkiff. Expressing and Ex-

ploiting Concurrency in Networked Applications in Aspen. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, San Jose, California, March 2007.

[46] J. Robert von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric

A. Brewer. Capriccio: Scalable Threads for Internet Services. In Proceedings of

the Symposium on Operating Systems Principles, pages 268-281, Bolton Land-

ing, New York, October 2003.

[47] Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An Architecture for

Well-Conditioned, Scalable Internet Services. In Proceedings of the Symposium

on Operating Systems Principles, pages 230-243, Banff, Canada, October 2001.

90

Vita

Taylor was born in 1978 in Baton Rouge, Louisiana. He is the son of Robert and

Bobbie Riché. Taylor graduated magna cum laude with honors from Tulane Uni-

versity in 2000 receiving a Bachelor of Science and Engineering degree in Computer

Engineering and Mathematics. He then worked at International Business Machines

Corporation for one year as a software engineer designing and implementing the

input-output subsystem for their line of IA64 servers. He left IBM in 2001 to start

the doctoral program in the Department of Computer Sciences at the University of

Texas at Austin. Taylor received a Masters of Science in Computer Sciences degree

from the University of Texas at Austin in 2004. He married Carrie Annette Jacobs

in March of 2004.

Permanent Address: 1510 W. North Loop Blvd. # 424

Austin, TX 78756

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

91

	Acknowledgments
	Abstract
	List of Figures
	Chapter Introduction
	Challenges of Multi- Programming
	Programming Environment Requirements
	Contributions of the Dissertation

	Chapter Target Application Domain
	Application Structure
	Request Characteristics
	Operator State
	Application Performance

	Chapter State of the Art
	Underlying Concepts
	Dataflow Programming
	Model-Driven Engineering

	Related Programming Environments
	High-Level Environments
	Low-Level Environments

	Run-Time Environments
	Multi--Aware Systems

	Chapter The Programming Model
	Procedural Component
	Declarative Component
	Application Meta-Model
	System Meta-model

	Chapter The Programming Environment
	Programming Environment Design
	Prepare Application for Multi-
	Integrate the Adaptation Framework

	Programming Environment Implementation
	Lagniappe Library Implementation
	Lagniappe Compiler Implementation

	Multi-Machine Lagniappe
	Coordinating Resource Allocation
	System-Wide Resource Access
	Resource Heterogeneity
	Data Serialization

	Requirements Discussion

	Chapter Experimental Evaluation
	Application Description
	The naptpt Application
	The attack Application
	The classify Application

	Experimental Setup
	Experimental Results
	Applications Automatically Use Resources
	Lagniappe Reduces Contention
	Lagniappe Adapts to Changes in Workload

	Chapter Conclusion
	Appendix Lagniappe Source Code for Applications
	The naptpt Application
	The attack Application
	The classify Application

	Bibliography
	Vita

